首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Native, iminodiacetic acid and triethylenetetraamine modified biomasses of Funalia trogii were used for removal of Congo Red dye (CRD) from aqueous medium. The native and modified fungal biomasses were characterized using ATR-FTIR, Zeta potential, contact angle studies and analytical methods. FTIR studies of the native and chemically modified adsorbent preparations show that amine, carboxyl and hydroxyl groups are involved in the adsorption of the model dye (i.e., Congo Red). The maximum adsorption of the CRD on the native, carboxyl and amine groups modified fungal biomasses was obtained at pH 5.0. The amount of adsorbed dye on the adsorbent samples increased as the initial concentration of CRD in the solution increased to 200mg/L. The adsorption capacities of native, carboxyl groups and amine modified fungal preparations were 90.4, 153.6 and 193.7mg/g dry adsorbents, respectively. The data was fitted well with the Langmuir isotherm model, and followed the pseudo-second-order equations. Thermodynamic parameters (ΔG o , ΔH o and ΔS o ) were also calculated. The results showed that triethylenetetraamine (TETA) modified biomass of F. trogii presented an excellent dye removal performance and can be used in various environmental applications such as various micro-pollutants removal from aqueous medium.  相似文献   

2.
A composite based on coffee grounds waste (CGW) coated with the semi-conducting polypyrrole (PPy) was prepared by pyrrole polymerization using potassium persulfate as oxidant. The composite was characterized by FTIR spectroscopy, cyclic voltammetry, UV/vis spectroscopy, scanning electron microscopy (SEM) and TGA analysis. SEM analysis showed homogeneous coating of coffee fibers with spherical nanoparticles of PPy with diameters in the range of 200–300 nm. Aqueous adsorption experiments of rhodamine B dye (RhB) onto the as-prepared composite were performed. The effect of pH and initial dye concentration (C0) on the adsorption behavior was studied. The results showed that this material was an efficient adsorbent of RhB dye at alkaline pH. The adsorption experiments were set at C0 = 200 mg/L and initial pH values of 2.0, 3.25 and 9.0, the adsorption capacities were 7.22, 13.8, and 19.0 mg of dye/g of the composite, respectively. Nonetheless, when pH was maintained at 9.0 throughout adsorption time, the adsorption capacity increased to 32 mg of dye/g of the composite. When performing adsorption tests using pure CGW, dye adsorption was insignificant at any pH level. Adsorption isotherm for RhB at controlled pH of 9.0 was well described by the Redlich–Peterson model and by the typical Langmuir adsorption model with a theoretical maximum adsorption capacity (qmax) of 50.59 mg of dye/g of composite.  相似文献   

3.
This study considers the feasibility of uptake of cephalexin, an emerging contaminant, from aqueous solutions by using green local montmorillonite (GLM), montmorillonite coated with ZnO (ZnO/GLM) and montmorillonite coated with TiO2 (TiO2/GLM) in the presence of H2O2. Batch adsorption experiments were carried out as a function of pH, initial concentration of the cephalexin, adsorbent dosage, contact time, and temperature. Finally, the adsorbents were characterized by XRD, SEM and FTIR analyses. XRD patterns showed dramatic changes in the adsorbents after loading with the nanoparticles, confirming successful placing of the nanoparticles onto GLM. The GLM mineral surface after nanoparticle loading appears to be fully exposed and more porous with irregular shapes in particles diameters of 1-50 microns. FTIR analyses also confirmed dramatic changes in surface functional groups after modification with these nanoparticles. The results showed that the removal efficiency of cephalexin was better at lower pH values. Totally, the removal efficiency increased with increase in adsorbent dosage and contact time and decreased with concentration and temperature increase. The thermodynamics values of ΔG o and ΔH o revealed that the adsorption process was spontaneous and exothermic. In isotherm study, the maximum adsorption capacities (qm) were obtained to be 7.82, 17.09 and 49.26 mg/g for GLM, ZnO/GLM and TiO2/GLM, respectively. Temkin constant (B T ) showed that adsorption of cephalexin from solution was exothermic for all three adsorbents.  相似文献   

4.
Highly microporous adsorbents (micropore fraction of ~70%) were prepared by the alkali activation-thermolysis (800°C, 1 h) of brown coal (C daf = 70.4%) in the presence of potassium hydroxide at the KOH/coal weight ratio R KOH ≤ 2.0 g/g. The dependences of the specific surface areas and adsorption capacities of the adsorbents for methylene blue (AMB, mg/g), iodine (AI, mg/g), and hydrogen (\(A_{H_2 } \), wt %) on R KOH were determined. The adsorbents obtained at R KOH ≥ 1.0 g/g exhibited developed specific surface areas and good adsorption characteristics (AI = 1000–1200 mg/g, AMB = 200–250 mg/g, and \(A_{H_2 } \) ≤ 3.16 wt % at 0.33 MPa). The high capacity for hydrogen allowed us to consider brown coal adsorbents as promising materials for use as hydrogen accumulators.  相似文献   

5.
D-ribose, a five-carbon sugar with diverse applications, is mainly produced by transketolase(tkt)-deficient Bacillus subtilis (B. Subtilis). We constructed B.subtilis SFR-3A by replacing the corresponding sites of B. subtilis 168 with the mutation site of tkt in the “wild” D-ribose high-producing strain B. subtilis SFR-4, resulting in 5.29 g/L of D-ribose. In the meantime, B.subtilis SFR-159 was constructed by completely removing the tkt gene of B. subtilis 168 with a higher production of 6.21 g/L. Through medium optimization, batch fermentation of SFR-3A and SFR-159 gave the best result of 27.56 g/L and 29.89 g/L, which corresponds to productivity of 0.51 g/L/h and 0.41 g/L/h, respectively. In this work, SFR-3A showed more latent capacity over SFR-159 as to productivity and had greater potential to serve as a platform for D-ribose production.  相似文献   

6.
Bovine serum albumin imprinted polyethylene glycol 600 (PEG600) grafted Calcium alginate (CaA) hydrogel microspheres were prepared and characterized. The adsorption and recognition properties of PEG600 grafted calcium alginate (CaA-g-PEG600) microspheres were evaluated and the results showed that the crosslinking structure of CaA-g-PEG600 microspheres exerted an obvious effect on the adsorption capacity and imprinting properties for bovine serum albumin. The adsorption isotherms and recognition properties indicated that the imprinted modified microspheres had excellent rebinding affinity toward target proteins and the imprinting efficiency varied according to PEG600 grafting degree. The adsorption capacity and the imprinting factor were 5.5 mg g?1 and 3.6, respectively. Adsorption kinetics of CaA-g-PEG600 microspheres in accordance with the molecular weight between crosslinks (Mc) was investigated and the structural influence on protein selective rebinding was discussed. Furthermore, the binary solution separation performance of CaA-g-PEG600 microspheres with different Mc was investigated by selective binding bovine serum albumin from protein mixture solution.  相似文献   

7.
In this work, a novel chitosan/P(2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylic amide) (CS/P(AMPS-co-AM)) hydrogel was successfully prepared by a simple one-step method using glow-discharge-electrolysis plasma (GDEP) initiated copolymerization, in which N,N′-methylenebisacrylamide was used as a cross-linking agent. A copolymerization mechanism of AMPS and AM onto CS initiated by GDEP was proposed. The structure, thermal stability and morphology of CS/P(AMPS-co-AM) hydrogel were characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), TG/DTG, and scanning electron microscope (SEM). This hydrogel was employed as an absorbent for the removal of methylene blue (MB) and malachite green (MG) from aqueous solutions. The effects of pH, contact time and equilibrium concentration on the dye adsorption were investigated batchwise. FTIR and XRD indicated that AM and AMPS were grafted onto the CS backbone successfully, forming copolymer. TG/DTG suggested that grafted AMPS and AM onto CS could change the thermal stability of the CS. SEM showed a unique three-dimensional porous structure for the CS/P(AMPS-co-AM) hydrogel. The optimum pH for the removal of cationic dyes was 5.8, and time of adsorption equilibrium was achieved in 90 min. The CS/P(AMPS-co-AM) hydrogel exhibited a very high adsorption potential, and its adsorption capacities calculated based on the Langmuir isotherm for MB and MG were 1,538.5 and 917.4 mg g?1, respectively. The dye adsorption data fitted well to the pseudo-second-order model and Langmuir model at 25 °C with pH 5.8.  相似文献   

8.
A production technology has been developed for strong briquets (with high CSR and M25) based on coke derived from Kansko-Achinsk lignite. A mixture consisting of lignite coke and binder (Zh and KZh coal) is crushed (to particle size less than 0.2 mm) and mixed with strengthening additive. This blend (57.7% lignite coke + 19.2% binder + 23.1% additive) is shaped into briquets, which are roasted at 1000°C and cooled in the absence of air. For the briquets, CSR = 58.8% and M25 = 97.4%. The strength in drop tests is 99.1%, and the wear resistance is 99.2%. Technical analysis of the briquets shows that W = 1–2%, Ad = 8–10%, Vdaf = 3–7%, Sd = 0.2–0.4%, Pd = 0.014%, and Cfix = 85–88%. The briquets are characterized by distinctive physicochemical properties, such as high activity with respect to CO2 (\(K_{CO_2}\) = 4.6 cm3/g s; CRI = 66.1%). Its electrical resistivity ρ = 8 Ω cm for the 3–6 mm size class; and its developed porosity is 50–56%. Applications of the briquets are outlined.  相似文献   

9.
The mechanism of formation of a porous active carbon framework is considered, and the properties of the solid thermolysis products of brown coal (Aleksandriisk deposit, Ukraine) with potassium hydroxide are studied. The yields of the solid thermolysis products (Y STP, %) and potassium humates, the rate of the interaction of the solid thermolysis products with KOH at 700–900°C, the specific surface areas (S BET, m2/g), the adsorption capacities for methylene blue (A MB, mg/g) and iodine (A I, mg/g), and the specific activities of surface areas A MB = A MB/S BET and A I = A I/S BET (mg/m2) are determined under variation of the KOH/coal ratio (R KOH < 18 mol/kg) and temperature (110–900°C).  相似文献   

10.
The development of new environment-friendly and efficient adsorbents has attracted a great interest in recent years. In this study, ethylene diamine-grafted chitosan copolymer (CS–MAA–EN) and triethylene tetramine-grafted chitosan copolymer (CS–MAA–TN) were synthesized to remove heavy metal ions from water. The influence of pH, adsorbents dosage and initial metal concentration were investigated to study the adsorbing effect of CS–MAA–EN and CS–MAA–TN for the removal of Cu2+ from aqueous solutions. The equilibrium adsorption capacities of CS–MAA–EN and CS–MAA–TN were 85.91 and 102.67 mg/g, respectively. The adsorption process was fitted better by the Langmuir isotherm model (R 2 = 0.9993, 0.9991) than the Freundlich isotherm model (R 2 = 0.8781, 0.8775). The adsorption kinetics confirmed that the adsorption mechanism could be better described by the pseudo-second-order equation. Two adsorbents showed excellent desorption efficiency (D e) and reuse ratio (R u). D e and R u of CS–MAA–EN were evaluated as 95.2 and 89.35 %, respectively, and those values of CS–MAA–TN were 92.73 and 83.25 %. The competitive adsorption results of the two adsorbents indicated that the rate sequence was Fe3+ > Cu2+ > Cr6+ > Ni2+ > Zn2+.  相似文献   

11.
ZnO-TiO2 sorbents synthesized by an impregnation method were characterized through XRD (X-ray diffraction), XPS (X-ray photoelectron spectroscopy) and EDS (Energy dispersive spectrometer) analyses. An experiment concerning the adsorption of Hg0 by ZnO-TiO2 under a simulated fuel gas atmosphere was then conducted in a bench-scale fixed-bed reactor. The effects of ZnO loading amounts and reaction temperatures on Hg0 removal performance were analyzed. The results showed that ZnO-TiO2 sorbents exhibited excellent Hg0 removal capacity in the presence of H2S at 150 °C and 200 °C; 95.2% and 91.2% of Hg0 was removed, respectively, under the experimental conditions. There are two possible causes for the H2S reacting on the surface of ZnO-TiO2: (1) H2S directly reacted with ZnO to form ZnS, (2) H2S was oxidized to elemental sulfur (S ad ) by means of active oxygen on the sorbent surface, and then S ad provided active absorption sites for Hg0 to form HgS. This study identifies three reasons why higher temperatures limit mercury removal. First, the reaction between Hg0 and H2S is inhibited at high temperatures. Second, HgS, as the resulting product in the reaction of mercury removal, becomes unstable at high temperatures. Third, the desulfurization reaction strengthens at higher temperatures, and it is likely that H2S directly reacts with ZnO, thus decreasing the S ad on the sorbent surfaces.  相似文献   

12.
Bacterial L-asparaginase has been widely used as a potential therapeutic agent in the treatment of various lymphoblastic leukemia diseases. We studied product and dual substrates utilization kinetics by P. carotovorum MTCC 1428 in batch bioreactor. The kinetic study revealed that the maximum growth of P. carotovorum MTCC 1428 was achieved at 2 g l ?1 and 5 g l ?1 of glucose and L-asparagine, respectively. Different substrate inhibition models were fitted to the growth kinetic data and the additive form of double Luong model was found to best explain the growth kinetics of P. carotovorum MTCC 1428. The kinetic parameters of growth studies showed that the predicted maximum inhibition concentration of glucose (S mg ) and L-asparagine (S ma ) was close to the experimentally observed value 15.0 and 10 g l ?1, respectively. Modified form of the Luedeking-Piret model was used to describe the kinetics of L-asparaginase production, and the system seems to be mixed growth associated. Kinetic models of dual substrate growth, L-asparaginase production and substrate(s) utilization by P. carotovorum MTCC 1428 well fitted with experimental data with regression coefficients (R2) value of 0.97, 0.96 and 0.93, respectively.  相似文献   

13.
JH Kim  J Kim  Y Park 《Lipids》2012,47(9):855-863
The supplementation of conjugated linoleic acid (CLA) has been shown to improve endurance by enhancing fat oxidation during exercise in rodents and humans. This study was designed to investigate the isomer-specific effects of CLA on endurance capacity and energy metabolism in mice during exercise. Male 129Sv/J mice were divided into three dietary groups and fed treatment diet for 6 weeks; control, 0.5 % cis-9,trans-11 (c9,t11) CLA, or 0.5 % trans-10,cis-12 (t10,c12) CLA. Dietary t10,c12 CLA induced a significant increase in maximum running time and distance until exhaustion with a dramatic reduction of total adipose depots compared to a control group, but there were no significant changes in endurance with the c9,t11 CLA treatment. Serum triacylglycerol and non-esterified fatty acid concentrations were significantly lower in the t10,c12 fed mice after exercise compared to control and the c9,t11 CLA fed-animals. Glycogen contents in livers of the t10,c12 fed-mice were higher than those in control mice, concomitant with reduction of serum l-lactate level. There were no differences in non-exercise physical activity among all treatment groups. In addition, the mRNA expression levels of carnitine palmitoyl transferase 1β, uncoupling protein 2 and peroxisome proliferator-activated receptor δ (PPARδ) in skeletal muscle during exercise were significantly up-regulated by the t10,c12 CLA but not the c9,t11 CLA. These results suggest that the t10,c12 CLA is responsible for improving endurance exercise capacity by promoting fat oxidation with a reduction of the consumption of stored liver glycogen, potentially mediated via PPARδ dependent mechanisms.  相似文献   

14.
The surface activity and thermodynamic properties of adsorption at the air–water interface of two series of cationic surfactants based on isourea: the O-dodecyl-N,N′-diisopropylisourea hydrochloride, hydrobromide, and hydroiodide and the O-tridecafluorooctyl-N,N′-diisopropylisourea hydrochloride and hydrobromide were studied. The effect of structural parameters as the nature of the halide counter ion and the nature of the non-polar chain on the surface activity and thermodynamic properties of adsorption were investigated. The surface parameters, the maximum surface excess concentration (Γ max), the minimum area per molecule (A min) at the aqueous solution-air interface, effectiveness of surface tension reduction (πCMC), and efficiency of surface tension reduction (pC 20) were estimated. The standard Gibbs free energy of adsorption, (ΔG°ads) change has been calculated at different temperatures.  相似文献   

15.
The first application of calcined Cardita bicolor oyster shell (CCBS) for Hg(II) and As(III) adsorption from synthetic and real wastewaters was tested. The main elements in CCBS structure were carbon, oxygen, magnesium, phosphor, and calcium. Effects of different parameters like initial pH, contact time, temperature, and CCBS dosage were assessed. The results showed that the maximum recovery of Hg(II) and As(III) adsorption was determined as C0=10 mg/L, t=80 min, T=25 °C, CCBS dosage=5 g/L, and pH=6 (for mercury ion) and 7 (for arsenic ion). In these conditions, 95.72% Hg(II) and 96.88% As(III) were removed from aqueous solution. The correlation coefficient (R2) values for both adsorbates were obtained >0.98 and >0.96 for Langmuir and Freundlich isotherm models, respectively. Pseudo-second-order kinetic model was more capable to describe kinetic behavior of adsorption process of both metal ions in comparison with pseudo-first-order model. The half life (t1/2) value for Hg(II) and As(III) with initial concentration of 10 mg/L was 4.032 and 4.957 min, respectively. Moreover, thermodynamic parameters of enthalpy (ΔH o ), entropy (ΔS o ), and Gibbs free energy (ΔG o ) were investigated. Two real wastewaters obtained from a leather factory and a landfill leachate were successfully treated using CCBS. The results confirmed that adsorption process of metals ions was exothermic and spontaneous.  相似文献   

16.
A modified sugarcane bagasse (SCB) fixed bed column was used to remove Pb2+ from aqueous solution. To determine the optimal condition for Pb2+ separation, Ca2+ was chosen as the model interfering ion, and effects of Ca2+ and Pb2+ initial concentration ratio (C 0 Ca : C 0 Pb ) on the adsorption of Pb2+ were investigated. Results showed that adsorption amount ratio of Ca2+ and Pb2+ (q e Ca : q e Pb ) had a good linear relationship with C 0 Ca : C 0 Pb . Mass ratio of Pb2+ absorbed on the modified SCB was higher than 95% at C 0 Ca : C 0 Pb <1.95, illustrating that Pb2+ could be selectively removed from aqueous solution. To verify that, simulated waste water containing co-ions of K+, Na+, Cd2+ and Ca2+ was treated, and results showed that the equilibrium amount of Pb2+, K+, Na+, Cd2+ and Ca2+ adsorbed was 134.14, 0.083, 0.058, 1.28, and 1.28mg g?1, respectively, demonstrating that the modified SCB could be used to remove Pb2+ from aqueous solution in the investigated range.  相似文献   

17.
Medium development for high level expression of human interferon gamma (hIFN-γ) from Pichia pastoris (GS115) was performed with the aid of statistical and nonlinear modeling techniques. In the initial screening, gluconate and glycine were found to be key carbon and nitrogen sources, showing significant effect on production of hIFN-γ. Plackett-Burman screening revealed that medium components., gluconate, glycine, KH2PO4 and histidine, have a considerable impact on hIFN-γ production. Optimization was further proceeded with Box-Behnken design followed by artificial neural network linked genetic algorithm (ANN-GA). The maximum production of hIFN-γ was found to be 28.48mg/L using Box-Behnken optimization (R2=0.98), whereas the ANN-GA based optimization had displayed a better production rate of 30.99mg/L (R2=0.98), with optimal concentration of gluconate=50 g/L, glycine=10.185 g/L, KH2PO4=35.912 g/L and histidine 0.264 g/L. The validation was carried out in batch bioreactor and unstructured kinetic models were adapted. The Luedeking-Piret (L-P) model showed production of hIFN-γ was mixed growth associated with the maximum production rate of 40mg/L of hIFN-γ production.  相似文献   

18.
Methylobacterium organophilum XX is a type II facultative methylotroph that can grow on methanol. In M. organophilum XX, the MxcQ/MxcE two-component system (TCS) is involved in methanol metabolism. EnvZ/OmpR in E. coli TCS was exploited to develop a methanol biosensor by engaging the MxcQ/MxcE TCS system. The MxcQZ/OmpR methanol sensing chimeric TCS was constructed by integrating the sensing domain of M. organophilum MxcQ with the transmitter domain of E. coli EnvZ. The response regulator of the chimeric TCS system is OmpR, which regulates the expression of the ompC and gfp. The expression of ompC was monitored by real-time quantitative PCR analysis. The expression of gfp also confirmed the expression of the ompC. The maximum expression of ompC and gfp occurred with 0.05% of methanol, and the expression started to decline with further increases in methanol concentration. This system delivers rapid detection of methanol in the environment.  相似文献   

19.
Hydroxyl terminated polylactide polymers with number of average molecular weights (M n ) varying from 1625 to 3459 g mol?1 were synthesized by ring opening bulk polymerization of lactide in the presence of zinc acetate being a potent catalyst. The use of 1,4 butanediol (BDO) initiator leads to hydroxyl terminated polylactides, thus excellent precursors for shape-memory biodegradable polyurethanes. Different reaction conditions employed for the synthesis of hydroxyl terminated polylactide polymers via activated monomer mechanism may result in differences in M n , percentage mass conversion and percentage degree of crystallinity (%χ c ) of the product. Influence of process parameters, i.e. catalyst concentration, initiator concentration, reaction temperature and time on characteristics of hydroxyl terminated polylactides was studied. These polymers were characterized by Nuclear Magnetic Resonance (1H-NMR) spectroscopy, Fourier transforms infrared (FTIR) spectroscopy, gel permeation chromatography (GPC) and X-ray diffraction (XRD) techniques. FTIR and 1H-NMR confirmed the formation of hydroxyl terminated polylactides. M n was determined by 1H-NMR, GPC and end group analysis. %χ c was calculated from XRD spectra. Maximum mass conversion, M n and %χ c were observed at 5 mol% SnOct2 and 5 mol% BDO concentration. At optimum temperature of 145 °C, these characteristics improved linearly with polymerization time up to 6 h and declined thereafter.  相似文献   

20.
Sida acuta, a common type of weed in Thailand, contains relatively high cellulose (42.7%) content. We pretreated NaOH to improve glucose recovery from S. acuta. The effect of pretreatment temperature and NaOH concentration was fundamentally investigated based on hydrolysis efficiency with recovery of solid fraction. The pretreatment condition was determined to be 3% NaOH at 60 °C for 9 h, which showed the highest glucose recovery. The hydrolysates obtained by enzymatic hydrolysis of S. acuta were applied to the fermentation of Saccharomyces cerevisiae K35, and a theoretical yield of 97.6% was achieved at 18 h. This indicated that the hydrolysates medium without detoxification had no negative effects on the fermentation. The production of biomass into bioethanol was evaluated based on the material balance of 1,000 g basis. Following this estimation, approximately 28 g and 110 g bioethanol could be produced by untreated and pretreated S. acuta, respectively, and this production was improved about 3.9-fold by NaOH pretreatment. These results again show the importance of pretreatment in biorefinery process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号