首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fig sawdust was used as a precursor for the production of activated carbon by chemical activation with H3PO4. The developed Fig sawdust activated carbon (FSAC) was used as a biosorbent for the removal of Pb(II) from aqueous solution. Highest adsorption of Pb(II) (95.8%) was found at pH 4. Equilibrium data fitted very well with the Langmuir isotherm model. Maximum adsorption capacity was determined 80.645 mg g−1 at pH 4. Kinetic studies demonstrated that the adsorption followed a pseudo second order kinetics model. The negative value of ΔG° confirmed the feasibility and spontaneity of FSAC for Pb(II) adsorption.  相似文献   

2.
The aim of this research was to investigate the sorption characteristics of polyaniline/sawdust (PAn/SD) for the removal of Zn(II) ions from aqueous solutions. Batch sorption studies were carried out to determine the effect of initial concentration of the sorbate, agitation time, adsorbent dose, and pH on the removal of Zn(II). The sorptive removal was found to be strongly pH‐dependent. The experimental data fitted well to the Freundlich isotherm. The products were investigated in terms of morphology and chemical structure by using scanning electron microscopy and Fourier‐transform infrared spectroscopy, respectively. Also, PAn/SD was used for the removal of heavy metals from urban waste water. J. VINYL ADDIT. TECHNOL., 2011. © 2011 Society of Plastics Engineers  相似文献   

3.
An interpenetration network (IPN) was synthesized from 2‐hydroxyethyl methacrylate (HEMA) and chitosan, p(HEMA/chitosan) via UV‐initiated photo‐polymerization. The selectivity to different heavy metal ions viz Cd(II), Pb(II), and Hg(II) to the IPN membrane has been investigated from aqueous solution using bare pHEMA membrane as a control system. Removal efficiency of metal ions from aqueous solution using the IPN membranes increased with increasing chitosan content and initial metal ions concentrations, and the equilibrium time was reached within 60 min. Adsorption of all the tested heavy metal ions on the IPN membranes was found to be pH dependent and maximum adsorption was obtained at pH 5.0. The maximum adsorption capacities of the IPN membrane for Cd(II), Pb(II), and Hg(II) were 0.063, 0.179, and 0.197 mmol/g membrane, respectively. The adsorption of the Cd(II), Hg(II), and Pb(II) metal ions on the bare pHEMA membrane was not significant. When the heavy metal ions were in competition, the amounts of adsorbed metal ions were found to be 0.035 mmol/g for Cd(II), 0.074 mmol/g for Hg(II), and 0.153 mmol/g for Pb(II), the IPN membrane is significantly selective for Pb(II) ions. The stability constants of IPN membrane–metal ions complexes were calculated by the method of Ruzic. The results obtained from the kinetics and isotherm studies showed that the experimental data for the removal of heavy metal ions were well described with the second‐order kinetic equations and the Langmuir isotherm model. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

4.
The potential of different forms of chitosan to adsorb iron(III) ion from a Jectofer [an iron(III)–sorbitol–citric acid complex] solution was investigated. The working solution was chosen as Jectofer, to mimic the composition of excess iron(III) as may be found in biological systems. The equilibrium studies showed that chitosan powder has the highest sorption capacity for the iron(III) ion when compared to chitosan flakes and microspheres. The amount of iron(III) adsorbed onto chitosan was found to increase with the contact time to reach equilibrium within 3 h at 37°C. A higher initial concentration of a Jectofer solution resulted in a higher amount of iron(III) adsorbed. Higher pH values, in the range 2–7, also resulted in an increase in iron(III) uptake from the solution. The data of adsorption from the Jectofer solution were found to correlate well with the Freundlich isotherm equation. In vitro adsorption experiments showed that chitosan is capable of adsorbing excess iron, measured in terms of the ferritin level, in human blood. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1185–1192, 2002; DOI 10.1002/app.10416  相似文献   

5.
The magnetic nitrogen-doped carbon (MNC) was prepared from polypyrrole by a simple high temperature calcination process in this paper. The structure and properties of MNC were analyzed by scanning electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction, Brunner-Emmet-Teller, vibrating sample magnetometer, and X-ray photoelectron spectroscopy. The capacity of MNC to adsorb Cr(VI) and Pb(II) was evaluated. The effects of the initial pH, dosage, concentration and temperature on the adsorption capacity of MNC were measured. MNC had a large specific surface area and a special porous structure. Its nitrogen and carbon sources were rich, and the ratio of carbon to nitrogen was fixed. The maximum Cr(VI)-adsorption capacity and maximum Pb(II) adsorption capacity of MNC could reach 456.63 and 507.13 mg∙g1 at 318 K, respectively. The pseudo-second-order model was used to describe the adsorption kinetics of MNC, and the Freundlich model was employed to discuss its isotherms. The adsorption process was affected by the electrostatic force, the reducing reaction, pores and chelation. The results of this study suggest that MNC is a material with superior performance, and is very easily regenerated, reused, and separated in the adsorption process.  相似文献   

6.
Heavy metal ion is one of the major environmental pollutants. In this study, a Cu(II) ions imprinted magnetic chitosan beads are prepared to use chitosan as functional monomer, Cu(II) ions as template, Fe3O4 as magnetic core and epichlorohydrin and glutaraldehyde as crosslinker, which can be used for removal Cu(II) ions from wastewater. The kinetic study shows that the adsorption process follows the pseudo-second-order kinetic equations. The adsorption isotherm study shows that the Langmuir isotherm equation best fits for the monolayer adsorption processes. The selective adsorption properties are performed in Cu(II)/Zn(II), Cu(II)/Ni(II), and Cu(II)/Co(II) binary systems. The results shows that the IIMCD has a high selectivity for Cu(II) ions in binary systems. The mechanism of IIMCD recognition Cu(II) ions is also discussed. The results show that the IIMCD adsorption Cu(II) ions is an enthalpy controlled process. The absolute value of ΔH (Cu(II)) and ΔS(Cu(II)) is greater than ΔH (Zn(II), Ni(II), Co(II)) and ΔS (Zn(II), Ni(II), Co(II)), respectively, this indicates that the Cu(II) ions have a good spatial matching with imprinted holes on IIMCD. The FTIR and XPS also demonstrates the strongly combination of function groups on imprinted holes in the suitable space position. Finally, the IIMCD can be regenerated and reused for 10 times without a significantly decreasing in adsorption capacity. This information can be used for further application in the selective removal of Cu(II) ions from industrial wastewater.  相似文献   

7.
《分离科学与技术》2012,47(17):2817-2829
ABSTRACT

A novel, three-dimensional material of g-C3N4/MgO was prepared by pyrolysis method. The adsorption behavior for Pb(II) onto g-C3N4/MgO was systematically investigated. The adsorption experiments confirmed that the g-C3N4/MgO exhibited remarkable adsorption performance owing to its rough morphology and abundant active sites on the surface. The maximum adsorption capacities for Pb(II) reached to 220.3, 226.2 and 235.1 mg/g at 308 K, 318 K and 328 K, respectively. The optimum adsorbent dosage was 1.0 g/L. The adsorption kinetics and isotherm could be well described by the pseudo-second-order model and Langmuir isotherm model, respectively. The adsorption process was spontaneous and endothermic.  相似文献   

8.
Ahmet Sar? 《Desalination》2009,249(1):260-316
The adsorption characteristics of Pb(II) and Cd(II) onto colemanite ore waste (CW) from aqueous solution were investigated as a function of pH, adsorbent dosage, contact time, and temperature. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the adsorption isotherms. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The adsorption capacity of CW was found to be 33.6 mg/g and 29.7 mg/g for Pb(II) and Cd(II) ions, respectively. Analyte ions were desorbed from CW using both 1 M HCl and 1 M HNO3. The recovery for both metal ions was found to be higher than 95%. The mean adsorption energies evaluated using the D-R model indicated that the adsorption of Pb(II) and Cd(II) onto CW were taken place by chemisorption. The thermodynamic parameters (ΔGo, ΔHo and ΔSo) showed that the adsorption of both metal ions was feasible, spontaneous and exothermic at 20-50 °C. Adsorption mechanisms were also investigated using the pseudo-first-order and pseudo-second-order kinetic models. The kinetic results showed that the adsorption of Pb(II) and Cd(II) onto CW followed well pseudo-second order kinetics.  相似文献   

9.
Environmental pollution by heavy metals is currently a problem of great concern for human health. In this context, this study aims to contribute with the synthesis and characterization of chitosan functionalized with three different ionic liquids (n-butylammonium acetate, sec-butylammonium acetate, and tert-butylammonium acetate) followed by its application in hexavalent chromium effluent treatment. The adsorbents synthesized (ChN, ChS, and ChT) were characterized by SEM, EDS, FTIR, BET, RDD, PSD, and XRD techniques. Afterward, the influences of temperature, contact time, and pH on the Cr(VI) adsorption process were evaluated. The solution with pH 3 displayed the highest adsorption capacities (107.31, 104.60, and 107.97 mg.g-1 for ChN, ChS, and ChT, respectively). The kinetic data were better adjusted to the Weber-Morris kinetic model with an ideal time of 2 h. Furthermore, the influence of temperature was evaluated using the Freundlich and Langmuir isotherms, with maximum capacities of 142.05 (ChN), 131.58 (ChS), and 146.63 mg.g-1 (ChT). The adsorbent displayed enhanced adsorption properties in comparison with raw chitosan by an intensification of the electrostatic interaction between amino groups and hexavalent chromium. Finally, the reusability was investigated, and significant results were observed (84.33 ± 4.87%) in the adsorption process after 4 cycles.  相似文献   

10.
In this work, we synthesized several ions imprinted polymers based on the inclusion of 8-hydroxyquinoline, vinyl benzoic acid, and diazoaminobenzene as ligands into the polymer matrix to complex with lead ions. Besides, to optimize various parameters for the selective extraction and enrichment of lead ions using the best synthesized imprinted polymers, the selectivity of the chosen inorganic ions was investigated. These investigations indicated that the synthesized imprinted polymer particles have good potential for selective enrichment of lead ions compared with other heavy metal ions, and the selectivity of lead ion-imprinted polymers for lead ion was higher than non-imprinted polymer.  相似文献   

11.
In this study, chitin (Ch) was made composite with polyaniline (PANI) and used for the removal of Pb(II) and Cd(II) ions from aqueous solution. Characterization techniques such as Fourier transform infrared spectroscopy, scanning electron microscope, energy-dispersive X-ray analyser and X-ray diffraction were employed to characterize the prepared PANI/Ch composite. Influence of various equilibrium parameters on the adsorption of Pb(II) and Cd(II) ions onto PANI/Ch composite was investigated. The adsorption process followed the Freundlich isotherm model, and the calculated maximum monolayer sorption capacity of PANI/Ch composite for Pb(II) and Cd(II) ions is 7.03 and 6.05 mg g?1 at 303 K. The kinetic data were well described by the pseudo-second-order model.  相似文献   

12.
Synthesis of a new magnetic nanocomposite of Clinoptilolite/Maghemite/Chitosan/Urea has been carried out to introduce an adsorbent to remove manganese as a toxic heavy metal from aqueous solution. Clinoptilolite zeolite became magnetic using the maghemite nanoparticles, then coated using chitosan as a biodegradable and non-toxic polymer, and finally functionalized by urea to increase the adsorption capacity. For characterization of the nanocomposite, the X-Ray diffraction, IR spectroscopy, vibrating sample magnetometery, and scanning electron microscopy were used. The effects of temperature, contact time, initial metal concentration, solution pH and adsorbent dose on the manganese removal capacity were evaluated. The kinetics of adsorption by the pseudo-first-order, pseudo-second-order, and Elovich kinetic models was studied and the results suggested the compliance of pseudo-second-order kinetic model with the kinetic data. The maximum adsorption capacity of manganese under the optimum condition of pH=2.13, the adsorbent amount of 0.02 g, initial solution concentration of 46.00 mg/L with response surface methodology, equaled 16.30 mg/g. The Langmuir, Freundlich, Temkin and Dobinin-Rudoshkovich adsorption isotherm models were investigated and Langmuir best fit the isotherm data. In the study of the thermodynamic results, negative Gibbs free energy represents the spontaneous nature of manganese removal process.  相似文献   

13.
The adsorption of Cu(II) ions onto chitosan and cross-linked chitosan beads has been investigated. Chitosan beads were cross-linked with glutaraldehyde (GLA), epichlorohydrin (ECH) and ethylene glycol diglycidyl ether (EGDE) in order to obtain sorbents that are insoluble in aqueous acidic and basic solution. Batch adsorption experiments were carried out as a function of pH, agitation period, agitation rate and concentration of Cu(II) ions. A pH of 6.0 was found to be a optimum for Cu(II) adsorption on chitosan and cross-linked chitosan beads. Isotherm studies indicate Cu(II) can be effectively removed by chitosan and cross-linked chitosan beads. Adsorption isothermal data could be well interpreted by the Langmuir equation. Langmuir constants have been determined for chitosan and cross-linked chitosan beads. The experimental data of the adsorption equilibrium from Cu(II) solution correlated well with the Langmuir isotherm equation. The uptakes of Cu(II) ions on chitosan beads were 80.71 mg Cu(II)/g chitosan, on chitosan-GLA beads were 59.67 mg Cu(II)/g chitosan-GLA, on chitosan-ECH beads were 62.47 mg Cu(II)/g chitosan-ECH and on chitosan-EGDE beads were 45.94 mg Cu(II)/g chitosan-EGDE. The Cu(II) ions can be removed from the chitosan and cross-linked chitosan beads rapidly by treatment with an aqueous EDTA solution and at the same time the chitosan and cross-linked chitosan beads can be regenerated and also can be used again to adsorb heavy metal ions.  相似文献   

14.
15.
Bamboo charcoal (BC) obtained by pyrolysis of Makino bamboo in the absence of oxygen was used as support for the preparation of Ni-doped adsorbent (Ni-BC). The low-cost composite was characterized and used as an adsorbent for Pb(II) removal from water. The results showed that both BET surface area and total pore volume of Ni-BC increased. The adsorption of Pb(II) strongly depended on solution pH, temperature and ionic strength. The adsorption isotherms followed Langmuir isotherm model well, and the maximum adsorption capacities of Pb(II) at 298 K were 25.0 and 142.7 mg/g for BC and Ni-BC, respectively. The adsorption processes were well fitted by pseudo-second-order kinetic model. Thermodynamic parameters showed that the adsorptions of Pb(II) onto both adsorbents were feasible, spontaneous, and exothermic under the studied conditions. The spent Ni-BC could be readily regenerated for reuse.  相似文献   

16.
This article deals with removal of Pb(II) ions from aqueous media using sweet industry byproduct, that is, sweetmeat waste (SMW). The SEM images revealed highly heterogeneous sorbent surface. XRD and FTIR studies were done. The sorption equilibrium time was found 45 min only, and the sorption followed pseudo-second-order reaction model, indicating chemisorption as the rate-limiting step. Pb(II) removal followed Langmuir isotherm model best, and the maximum sorption capacity was 11.38 mg/g. The fixed bed column study was performed and analyzed using Logit, Bohart-Adams and Wolborska models. The sorption rate and capacity constants were 0.143(±0.017) L/mg.h and 39(±7) mg/L, respectively.  相似文献   

17.
18.
19.
以橡椀栲胶为原料,通过双氧水氧化降解改性,研究水解类橡椀单宁改性后对铜离子溶液的吸附沉淀以及pH值、金属溶液初始浓度对铜离子吸附沉淀容量的影响和规律。结果表明,氧化橡椀单宁对Cu2+的吸附平衡符合Freundlich方程。改性后吸附沉淀容量受初始浓度影响较大,初始浓度为20 mg/L时基本不发生吸附沉淀,试验最大初始浓度100 mg/L时吸附量达到39.300 mg/g。  相似文献   

20.
The binary chitosan/silk fibroin composite synthesized by reinforcement of silk fibroin fiber into the homogenous solution of chitosan in formic acid was used to investigate the adsorption of two metals of Cu(II) and Cd(II) ions in an aqueous solution. The binary composite was characterized by Fourier transform infrared and scanning electron microscopy. The optimum conditions for adsorption by using a batch method were evaluated by changing various parameters such as contact time, adsorbent dose, and pH of the solution. The experimental isotherm data were analyzed using the Freundlich and Langmuir equations, indicated to be well fitted to the Langmuir isotherm equation under the concentration range studied, by comparing the correlation co‐efficient. Adsorption kinetics data were tested using pseudo‐first‐order and pseudo‐second‐order models. Kinetics studies showed that the adsorption followed a pseudo‐second‐order reaction. Due to good performance and low cost, this binary chitosan/silk fibroin composite can be used as an adsorbent for removal of Cu(II) and Cd(II) from aqueous solutions. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号