首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
以聚己内酯(PCL)为软段,甲苯2,4-二异氰酸酯(TDI)为硬段,通过预聚合和扩链反应制得含结晶软段的聚氨酯形状记忆材料(SMPU),通过差热分析、红外分析及X射线衍射对其微结构进行了表征。结果表明,随着硬段含量的增加,SMPU的结晶熔融温度上升,结晶度下降,形状回复率减小,形状固定率始终保持在98%左右;随着PCL相对分子质量的提高,SMPU的结晶熔融温度减小,结晶度增大,回复响应温度逐渐降低。  相似文献   

2.
以聚己内酯二醇(PCL3000)与4,4’-二苯基甲烷二异氰酸酯(MDI)合成出形状记忆聚氨酯(SMPU),运用半互穿网络(semi-IPN)技术,再采用N-异丙基丙烯酰胺(NIPAM)单体在SMPU线性大分子链间原位聚合形成三维网状的SMPU/聚N-异丙基丙烯酰胺(PNIPAM)半互穿温敏聚合物,并对制备的SMPU及semi-IPN聚合物的结构与性能进行表征。结果表明,semi-IPN聚合物软段晶区在室温范围内具有单一的熔融转变温度,而且该转变温度可以通过不同合成配比进行调控,当SMPU/PNIPAM质量比为4∶1、硬段质量分数为35%时,semi-IPN样品的软段结晶熔融温度为30.6℃,接近人体体表最适宜的温度26~28℃。semi-IPN聚合物相比于SMPU具有更好的亲水性,且硬段质量分数在25%时能获得较优异的温敏性能。  相似文献   

3.
通过熔融共混制备了聚羟基脂肪酸酯/聚己内酯(PHA/PCL)复合材料,利用差示扫描量热仪(DSC)和偏光显微镜(PLM)研究了PHA/PCL共混体系的等温结晶行为及结晶形貌。结果表明:该共混体系的PHA结晶度均高于纯样,而随着体系中PCL含量的增加,PHA结晶度先增大后减小,且在PHA与PCL的质量比为60:40时达到极大值。PCL的引入可明显提高PHA的结晶能力,但不会对PHA的熔点产生影响。对于PHA/PCL(60/40)共混体系,当等温结晶温度(T_c)为70~130℃时,PHA会出现冷结晶与多重熔融转变,其相对结晶度随着T_c的升高而先增大后减小,且在120℃时达到最大值。  相似文献   

4.
聚(ε-己内酯)(PCL)是一种半结晶性聚合物,由于其具有良好的可降解性和形状记忆性能,PCL的改性被广泛关注和研究。通过分子交联的方式将氢醌-双(β-羟乙基)醚(HQEE)引入一种具有树枝状拓扑结构的PCL基形状记忆聚氨酯。其中,六亚甲基二异氰酸酯作为固化剂、三羟甲基丙烷(TMP)作为交联剂。用傅里叶变换红外光谱分析、X射线衍射光谱分析、热重分析、差示扫描量热分析和形状记忆性能分析表征所制备的形状记忆聚氨酯(SMPU)。分析结果表明,异氰酸酯(—NCO)活性基团全部参与反应,成功制备得到SMPU试样。所制备的SMPU均具有结晶性,且其结晶性能随扩链剂(HQEE和三甲基戊二醇)含量的升高而降低,热降解性能良好,在30.9~40.2℃范围内出现结晶/熔融峰,形状回复率均为100%,形状固定率和形状回复时间均随扩链剂含量的增大而减小。综合分析得到,试样SMPU-H2和SMPU-H3的结晶性能适中,表现出良好的形状记忆性能。其中,SMPU-H2和SMPU-H3的硬段含量分别为38.51%和46.39%,形状记忆转变温度分别为35.5,34.7℃。  相似文献   

5.
将竹纤维(BF)与聚己内酯(PCL)熔融共混,通过模压工艺制备了竹纤维增强聚己内酯(PCL/BF)复合材料。研究和分析了BF含量对复合材料力学性能、热稳定性以及熔融、结晶行为的影响。结果表明,随着BF含量的增加,复合材料的拉伸性能、冲击性能和断裂伸长率均先升高后降低,当BF含量为40 %(质量分数,下同)时,分别达到最大值13.6 MPa、14.64 kJ/m^2和7.03 %;复合材料的热稳定性与BF和PCL的配比息息相关,受热过程中对彼此热解会产生抑制作用;BF的加入在一定程度上降低了PCL的熔融温度和结晶度,但结晶温度提高;BF含量超过40 %时,BF含量对复合材料吸水率的影响显著,且随着BF含量的增加,复合材料的吸水率快速增长。  相似文献   

6.
以异佛尔酮二异氰酸酯、六亚甲基二异氰酸酯、聚己二酸丁二醇酯为主要原料合成了水性聚氨酯(WPU),通过FT-IR、DSC、XRD、SEM表征手段,研究了硬段含量对软段结晶性及WPU粘结性能的影响。研究表明,随着硬段含量的增加,WPU分子链上氨基甲酸酯键之间的氢键化程度提高,软硬两相相混严重,WPU软段结晶熔融焓变小,熔融温度变低;结晶衍射峰变弱,软段结晶性变差;粘结性能测试表明,在硬段含量较低时,聚氨酯体现出良好的结晶性能,初粘性较好。  相似文献   

7.
在选定液化MDI和聚己二酸丁二醇酯(PBAG)软段原料的前提下,采用双酚A(FA)、乙二醇(ED)、1,4-丁二醇(BD)、1,6-己二醇(HD)、一缩乙二醇(DE)扩链剂合成了一系列形状记忆聚氨酯(SMPU);用FT-IR、DSC对样品的结构进行了分析,并考察了它们的形状记忆性能和力学性能。结果发现,扩链剂对SMPU有一定影响,用FA、ED扩链的SMPU具有较好的微相分离,而DE扩链的具有较好的软段结晶性能;FA、HD的SMPU具有较低的形状回复温度和较快的形状回复速率,HD、DE扩链的则具有较好形状固定性能,FA、DE扩链的SMPU循环使用性能较好;同时FA、HD的SMPU具有较高的弹性模量与力学强度。  相似文献   

8.
以4,4’-二苯基甲烷二异氰酸酯(MDI)为硬段,1,4-丁二醇(BDO)为扩链剂,分别以分子量1000、2000、3000的聚己内酯(PCL),聚己二酸乙二醇酯(PEAG),聚己二酸丁二醇酯(PBAG)为软段,在硬段含量不变的条件下,合成了一系列的形状记忆型聚氨酯(SMPU)。通过FT-IR,DSC,XRD等测试了其结构,并比较了形状记忆性能,研究表明,分子量2000的PEAG在硬段含量不变的情况下性能最佳,形状恢复率可达到100%。  相似文献   

9.
为了研究氯水老化pH值对氨纶的影响,使用不同pH值的次氯酸钠溶液对氨纶进行老化处理,随后采用傅里叶变换红外光谱、X射线衍射、差示扫描量热及力学性能测试分析老化后样品的氢键化程度、微相分离程度、结晶性、热性能与拉伸性能。结果表明:氨纶氢键化程度、微相分离程度和硬段结晶度都随氯水p H值的降低而减弱。在热性能方面,随着氯水pH值的降低,氨纶的玻璃化转变温度与软段结晶熔融温度升高,软段结晶度减小。在拉伸力学性能方面,低pH值氯水处理后的氨纶表现出更小的断裂强力和断裂伸长率。  相似文献   

10.
董子辉  李闯  苏威铭  刘锦春 《橡胶工业》2023,70(11):0876-0880
以聚己内酯二醇(PCL2000)和聚四氢呋喃醚二醇(PTMG1000)并用作为软段单体、二苯基甲烷二异氰酸酯为硬段单体,合成混炼型聚氨酯(MPU)。保持硬段含量不变,研究PCL/PTMG并用比(质量比)对MPU性能的影响。结果表明:随着PTMG用量的增大,MPU的玻璃化温度降低;MPU硫化胶的拉伸强度、拉断伸长率和撕裂强度均先增大后减小,DIN磨耗量增大,热氧老化后的拉伸强度和拉断伸长率降幅明显增大;当PCL/PTMG并用比为90/10时,MPU硫化胶的拉断伸长率和撕裂强度最大,分别为518%和66 kN·m-1;仅加入PCL的MPU硫化胶的DIN磨耗量最小, 为0.014 4 cm3。  相似文献   

11.
Nanoclay-tethered shape memory polyurethane nanocomposites   总被引:1,自引:0,他引:1  
Feina Cao 《Polymer》2007,48(13):3790-3800
The study investigated shape memory properties of nanoclay-tethered polyurethane nanocomposites. Polyurethanes based on polycaprolactone (PCL) diol, methylene diisocyanate, and butane diol and their nanocomposites of reactive nanoclay were prepared by bulk polymerization in an internal mixer and the values of shape fixity and shape recovery stress were determined as function of clay content. The melting point of the crystalline soft segment was used as the transition temperature to actuate the shape memory actions. It was seen that clay particles exfoliated well in the polymer, decreased the crystallinity of the soft segment phase, and promoted phase mixing between the hard and soft segment phases. Nevertheless, the soft segment crystallinity was enough and in some cases increased due to stretching to exhibit excellent shape fixity and shape recovery ratio. A 20% increase in the magnitude of shape recovery stress was obtained with the addition of 1 wt% nanoclay. The room temperature tensile properties were seen to depend on the competing influence of reduced soft segment crystallinity and the clay content. However, the tensile modulus measured at temperatures above the melting point of the soft segment crystals showed continued increases with clay content.  相似文献   

12.
The shape memory behavior of a series of polycaprolactone/methane diisocyanate/butanediol (PCL/MDI/BDO) segmented polyurethanes of different composition was studied. The molecular weight of PCL diols was in the range of 1600–7000, and the hard segment content varied from 7.8 to 27% by weight. Film specimens for shape memory measurements were prepared by drawing at temperatures above the melting temperature of the soft segment crystals and subsequent quick cooling to room temperature under constrained conditions. The shape memory process was observed and recorded in a heating process. Parameters describing the recovery temperature, ability, and speed were used to study the influence of structure and processing conditions on the shape memory behavior of the sample. It was found that the high crystallinity of the soft segment regions at room temperature and the formation of stable hard segment domains acting as physical crosslinks in the temperature range above the melting temperature of the soft segment crystals are the two necessary conditions for a segmented copolymer with shape memory behavior. The response temperature of shape memory is dependent on the melting temperature of the soft segment crystals. The final recovery rate and the recovery speed are mainly related to the stability of the hard segment domains under stretching and are dependent on the hard segment content of the copolymers. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 1511–1516, 1997  相似文献   

13.
Shape memory polymers are remarkable materials renowned for their distinctive ability to fix and recover their original shape in response to specific stimuli. However, the lower shape fixity (SF) of conventional thermally triggered shape memory polyurethane (SMPU) has limited its broad application potential. This study investigates the transformative influence of graphene oxide (GO) nanofillers when incorporated into a linear diisocyanate-based mixing segment SMPU (SMPU-GO). The lower SF issue of SMPU is ingeniously addressed by leveraging the interactive properties of GO with the 4,4′-methylene bis-phenyl diisocyanate hard segment and the introduction of additional physical cross-links via hexamethylene diisocyanate mixing segment. At 1 wt.% GO incorporation, the modulus increased by 178%, an 8% increase in tensile strength, while the elasticity was maintained. Excellent improvement in SF and shape recovery (SR) was attained at 1 wt.% GO incorporated SMPU, and the SMPU nanocomposite showed the highest SF (65%) and SR (100%) at 70°C temperature and 50% strain.  相似文献   

14.
形状记忆聚氨酯材料研究进展   总被引:3,自引:0,他引:3  
综述了形状记忆聚氨酯(SMPU)材料的软硬段的改进、复合改性、交联共混改性等国内外的最新研究进展,重点介绍了改变原料配比、改进合成工艺、复合、交联、共混等获得性能更优的SMPU的方法.并对其在医学、纺织、航空等多方面的应用现状和前景进行了概述.  相似文献   

15.
A series of liquefied‐MDI‐based polyurethanes having shape memory behavior, with various soft segments, chain extenders, and micro‐phase separation promoters were synthesized. Their morphology and properties were investigated in terms of thermal properties, dynamic mechanical properties, and shape recovery behavior. The results indicate that the soft segment formed with longer chain segment incline to crystallize during the cooling scans and the resulting SMPU have the higher crystallinity. Meanwhile, the chain extenders, which can enhance the polarity of hard segment, incline to have excellent shape memory properties with bigger storage modulus in rubbery state too. It was also found that the micro‐phase separation promoters have great influence on the shape memory behavior due to the enhancement of micro‐phase separation of SMPU. Furthermore, it was proved again that SMPU with longer soft segment and lower hard segment contents usually showed good shape memory behavior. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

16.
To illustrate the importance of cationic groups within hard segments on shape memory effect in segmented polyurethane (PU) cationomers, the shape memory polyurethane (SMPU) cationomers composed of poly(ε‐caprolactone) (PCL), 4,4′‐diphenylmethane diisocyanate (MDI), 1,4‐butanediol (BDO), and N‐methyldiethanolamine (NMDA) or N,N‐bis(2‐hydroxyethyl)isonicotinamide (BIN) were synthesized. The comparison of shape memory effect between NMDA series and BIN series was made. The relations between the structure and shape memory effect of the two series of cationomers with various ionic group contents were investigated. It is observed that the stress at 100% elongation is reduced for these two series of PU cationomers with increasing ionic group content. Especially for NMDA series, the stress reduction is more significant. The fixity ratio and recovery ratio of the NMDA series can be improved simultaneously by the insertion of cationic groups within hard segments, but not for the BIN series. Characterizations with DSC and DMA suggest that the crystallibility of soft segment in SMPU cationomers was enhanced by incorporation of ionic groups into hard segments, leading to a relative high degree of soft segment crystallization; compared with the corresponding nonionomers, incorporation of charged ionic groups within hard segments can enhance the cohesion force among hard segments particularly at high ionic group content. This methodology offers good control of the shape memory characteristic in thin films and is believed to be beneficial to the shape memory textile industries. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 545–556, 2007  相似文献   

17.
Shape memory fibers (SMFs) were prepared via a melt spinning process. The fibers were subject to different heat treatments to eliminate internal stress and structure deficiency caused during the melt spinning process. The influences of heat treatments on the SMF thermal properties, molecular orientation, tensile properties, dimensional stability, recovery force relaxation, and thermomechanical cyclic properties were studied. It was found that the heat treatments increased soft segment crystallinity and phase separation while decreased molecular orientation. The low‐temperature heat treatment increased the breaking elongation, shape fixity ratios, and decreased boiling water shrinkage while shape recovery ratios were decreased. High‐temperature treatment increased both the shape recovery ratios, fixity ratios, recovery stress stability and at the same time decreasing the fiber mechanical strength. The results from differential scanning calorimetry, molecular orientation apparatus, and cyclic tensile testing were used to illustrate the mechanism governing the mechanical properties and shape memory effect. To obtain comprehensive outstanding properties, the SMF is expected to be treated at a high temperature because of the hard segment high glass transition temperature. Unfortunately, the heat treatment could not be conducted at a too high temperature because the SMF became too tacky and soft due to the melting of the soft segment phase. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
Shape memory fibers (SMFs) were prepared via melt spinning. The fibers underwent different heat treatments to eliminate internal stress and structure deficiency caused during melt spinning. The influences of heat treatments on the SMF crystallinity, molecular orientation, hydrogen bonding, and shape memory behavior were studied. It was found with increasing heat‐treatment temperature, the soft segment crystallinity, crystallite dimension, and microphase separation increased, and the hydrogen bonding in the hard segment phase increased. Low temperature heat treatments decreased the shape recovery ratios while increasing the shape fixity ratios as a result of internal stress releasing and molecules disorientation. High temperature heat treatments increased the hard segment stability. Increasing heat‐treatment temperature resulted in the improvement of both the shape recovery and fixity, because it promoted the phase separation. The results from DSC, DMA, XRD, and FTIR were used to illustrate the mechanism governing these properties difference. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号