首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cu2ZnSnS4 (CZTS) thin films were successfully fabricated on glass substrates by sulfurizing Cu-Sn-Zn multilayer precursors, which were deposited by ion beam sputtering and RF magnetron sputtering, respectively. The structural, electrical and optical properties of the prepared films under various processing conditions were investigated in detail. Results showed that the as-deposited CZTS thin films with the precursors by both ion beam sputtering and RF magnetron sputtering have a composition near stoichiometric. The crystallization of the samples, however, has a strong dependence on the atomic percent of constituents of the prepared CZTS films. A single phase stannite-type structure CZTS with a large absorption coefficient of 104/cm in the visible range could be obtained after sulfurization at 520°C for 2 h. The samples relative to the RF magnetron sputtering showed a low resistivity of 0.073 Ωcm and band gap energy of about 1.53 eV. The samples relative to the ion beam sputtering exhibited a resistivity of 0.36 Ωcm and the band gap energy is about 1.51 eV. Supported by the National Natural Science Foundation of China (Grant No. 10574106), the Planned Science and Technology Project of Guangdong Province (Grant No.2003C05005) and the Natural Science Fund of Zhanjiang Normal University (Grant No.200801)  相似文献   

2.
Alkali induced morphology and property improvements of TiO2 by hydrothermal reaction were investigated. The products were characterized by SEM, TEM, XRD, TG, EDX, FT-IR and DRS. The results indicate that, with the phase transformation from anatase to rutile, the morphologies changed from high aggregated particles to nanofibers with the diameter of about 100 nm and the length up to several tens of micrometers, meanwhile the process is controllable by manipulating the nature of the alkali, alkalinity and hydrothermal temperature. DRS analysis shows the property improvement of the nanofibers in the UV-Vis light absorption compared with the raw materials, implying the products have potential application in photocatalysis.  相似文献   

3.
The effect of grain size of CaCO3 and SiO2 on the formation of C3S under various conditions, such as rapid heating rate(800 ℃/min), normal heating rate(30 ℃/min) and in the presence or absence of ZnO, was studied. The results show that the decomposition temperature of CaCO3, the temperature of appearance of liquid phase and the f-CaO content descend when the grain size of CaCO3 and SiO2 becomes smaller, which attributes to the reactive activity enhancement of powders due to the decrease of the particle size. When the grain size of CaCO3 and SiO2 is below 1 μm, the rate of the formation of C3S is greatly raised. A rapid sintering rate and the presence of ZnO have an important effect on the formation of C3S and can lower the temperature of the formation of C3S by about 50 ℃.  相似文献   

4.
The high quality single-phase solution of CO2/ Polystyrene was achieved,by analyzing the influential factors for polymer microcellular foaming extrusion.The curve of pressure distribution along the barrel was determined.The axial position of gas-injecting port on the barrel was chosen form the results of stable foaming,and the number of gas-injecting ports in the circumference of the barrel was determined from the CO2 solubility in polymer.The effect of the screw rotation speed on CO2 solubility was studied,and the effects of pressure difference between the gas and the polymer melt on gas-injecting process and on the foaming stability were investigated.The influence of the gas temperature before injection on the single-phase of CO2/Polystyrene solution also was studied.  相似文献   

5.
Fe3O4/carbon nanotubes (Fe3O4/CNTs) nanocomposites were prepared by polylol high-temperature decomposition of the precursor ferric chloride and CNTs in liquid triethylene glycol. After surface modification with hexanediamine, folate was covalently linked to the amine group of magnetic Fe3O4/CNTs nanocomposites. The products were characterized by Fourier-transform infrared spectroscopy, transmission electron microscopy, and vibrating sample magnetometry. Then Fe3O4/CNTs were used as a dual-drug carrier to co-delivery of the hydrophilic drug epirubicin hydrochloride and hydrophobic drug paclitaxel. The results indicated that the Fe3O4/CNTs had a favorable release property for epirubicin and paclitaxel, and thus had potential application in tumor-targeted combination chemotherapy.  相似文献   

6.
Titanium dioxide (TiO2) porous ceramic pellets with three dimension nano-structure were prepared using nano TiO2 powder. The TiO2 porous ceramic pellets were composed of TiO2 nanoparticles with 14–16 nm in diameter and had porosity of 74.85%. The mean pore size of the TiO2 porous ceramic pellets was 20.73 nm and the main pore size ranged from 3 to 16 nm. The mass loss of the TiO2 ceramic pellets was less than 5% after 20 d immersion in water. The antibacterial properties of the TiO2 pellets were studied. The sterilization rate of Colibacillus (hospital polluted water with bacterium) can reach 99% after 3 h photocatalytic process and these TiO2 pellets are easy to be re-activated and cyclically be used. The shaping mechanism and photocatalysis sterilization mechanism of the TiO2 pellets were discussed. Funded by the Applied Basis Research from Sichuan Province, the Research of Photo Purification to Environment with Nano TiO2 (No. 05YJ029-010)  相似文献   

7.
The erosion resistance tests were used to research the erosion wear behavior of CaO-Al2O3-SiO2 system glass-ceramic. With the orthogonal test method, the factors thai affect the erosion wear of CaO-Al2O3-SiO2 system galss-ceramic such as pacticles property, impact angle, impact time, size of particles were discussed. The results show that erosion rate rises along a straight line at the early period of erosion wear. With the impact time increased, the erosion rate deviates from original staight line, tendency of the erosion rate increases, With the size of paricle increased , it will have more kinetic energy, the erosion rate of the surface of glass-ceramics ploate rises.  相似文献   

8.
Fe-Al intermetallic/TiC-Al2O3 ceramic composites were successfully prepared by selfpropagating high-temperature synthesis (SHS) from natural ilmenite, aluminium and carbon as the raw materials. The effects of carbon sources, preheating time and heat treatment temperature on synthesis process and products were investigated in detail, and the reaction process of the FeTiO3-Al-C system was also discussed. It is shown that the temperature and velocity of the combustion wave are higher when graphite is used as the carbon source, which can reflect the effect of the carbon source structure on the combustion synthesis; Prolonging the preheating time or heat treatment temperature is beneficial to the formation of the ordered intermetallics; The temperature and velocity of the combustion wave are improved, but the disordered alloys are difficult to eliminate with the preheating time prolonged. The compound powders mainly containing ordered Fe3Al intermetallic can be prepared through heat treatment at 750 ℃.  相似文献   

9.
Using organo-tin Sn(OC4H9)4 as precursor, sodium dodecyl sulfonate (SDS) and SDS-gelatin (SDS-G) complex as template, two tin dioxide colloidal particles were prepared by a self-assembly method. Both SnO2 products were respectively labelled SnO2-B particles with SDS and SnO2-C particles with SDS-G, which are applied in fabricating SnO2 gas sensors corresponding to SnO2-B’ and SnO2-C’ sensors. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermo-gravimetry and different thermal analysis (TG/DTA) were used for characterizations. The experimental results show that SnO2-B colloidal particles are composed of mesoporous piece-like particles, while SnO2-C particles mainly consist of spherical particles. Gas sensing measurements show that SnO2-B’ sensor performs the best sensing response to all target gases, including H2, C2H5OH and liquid petroleum gas (LPG). In particular, the sensing response of SnO2-B’ sensor is achieved at 32 in H2 atmosphere at the concentration of 1000×10-6 M. The gas sensing mechanism was purposely discussed from the electron transfer process and the microstructures of the as-prepared SnO2 products. It is found that serious agglomerations in SnO2-B’ particles facilitate the high gas sensing performance of SnO2-B’ sensor, while mesoporous structures in SnO2-C’ particles decrease the gas sensing response of SnO2-C’ sensor.  相似文献   

10.
The dielectric ceramics with a main crystal phase of MGTiO3 and additional crystal phase of CaTiO3 were prepared by the conventional electronic ceramics technology .the strucures of MgTiO3 are ilmenitetype,and belong to hexagonal syngony.the ratio of MgTiO3 to Ca TiO3 doping on the dielectric properties of MGTiO3-CaTiO3(MCT)ceranics were inrestigated.the addition of B2O3 decreases the sintering temperatnre and results in rapid desification without obrious negative effect on the Q values of the system(Q=1/tan ).B2O3 exists as liquid phase in the sintering process,promoting the reactions as a singering agent.  相似文献   

11.
In order to get a homogenous mixture and compact of TiB2-Al2O3, hybridization as a surface modification method was used to prepare nano-scale Al2O3 coated TiB2 particles. PE-wax particles were first coated onto TiB2 particles by hybridization, and then the nano-scale Al2O3 particles were coated onto the surface of TiB2 coated by PE-wax particles again. SEM, TEM and EDS were used to characterize the microstructure of as-received core/shell particles and its compacts. The experimental results show that a particle-scale homogenous dispersion of TiB2 and Al2O3 can be formed not only in mixed powder but also in dewaxed compacts. The compacts then were sintered by gas-pressing sintering (GPS). Finial products show improved mechanic properties comparing with reference samples fabricated by normal ways.  相似文献   

12.
The structure and properties of the glass-ceramics were tested with X-ray diffraction testing instrument,correlative software,and other modern testing means.Then the effect of Al2O3 content on internal stresses in CaO-Al2O3-SiO2 glass-ceramics was studied deeply.In order to study the relationship of Al2O3 to the residual stress of CaO-Al2O3-SiO2 glass-ceramics,X-ray diffraction "sin2ψ" was used.The means utilized the x radial incidence produced from cathode radial tube,and took the space between crystals as measurement of strain.When the stresses produced,the space between crystals changed and the diffraction peak moved during Bragg diffraction.The magnitude of movement is related to the stresses.The experimental results show the residual stress is considerably high and Al2O3 can influence the mechanical properties of this material hugely.  相似文献   

13.
The TiB2 thin films were deposited on steel substrates using RF magnetron sputtering technique with the low normalized substrate temperature (0.1〈Ts/Tm〈0.2). Microstructure of these films was obtained by field emission scanning electron microscope (FESEM) and the grazing incidence X-ray diffraction (GIXRD) characterization, while the composition of films was obtained using Auger emission spectroscopy (AES) analysis. It was found that the TiB2 thin films were overstoichiometric with the B/Ti ratio at 2.33 and the diffusion of Ti and B atoms on the substrate surface was greatly improved at 350 ℃. Moreover, a new dense structure, named "equiaxed" grain structure was observed by FESEM at this substrate temperature, Combined with FESEM and AES analysis, it was suggested that the "equiaxed" grain structure was located in Zone 2 at the normalized substrate temperature as low as 0.18.  相似文献   

14.
Poly ethylene oxide (PEO)x−V2O5−V2O5−MoO3 (x=0, 0.5, 1) films were prepared by the sol-gel method. The synthesis and structure of the films were investigated by XRD, TG-DTA, FTIR, etc. The results show that V2O5−MoO3 xerogel has a layered structure and its interlayer space increased from 1.3181 nm at x=0 to 1. 7898 nm at x=1 after the nanocomposite films were dried, and PEO in the interlayer changes the interface structure by forming hydrogen bonds with V=0 bands. CV measurement indicates that the intercalation of PEO improves insertion/extration properties of Li+ ions in the interlayer. ZHENG Jin-xia: Born in 1976 Funded by the National Natural Science Foundation of China (No. 50172036) and Natural Science Foundation of Hubei Province(No. 2001ABB083)  相似文献   

15.
Nano fluorescent powder of Y4Al2O9: Eu3+ was synthesized by sol-gel method. The XRD shows that the product prepared at 900°C is pure-phase Y4Al2O9: Eu3+. The Y4Al2O9 powder is nano-size crystal testified by BF and ED analysis of TEM. The grain diameter of Y4Al2O9 is in the range between 20 and 50nm, and its average is 30 nm. The luminescent spectra show that Eu3+ ious occupy two kinds of sites in Y4Al2O9 crystal lattice. One is in the strict inversion center, and the other is in off lying inversion center. When excited with UV light (λ=254nm), Y4Al2O9: Eu3+ exhibits an orange emission bond at λ=590 nm due to the5Do7F1 transition and a red emission band at λ=610 nm due to5Do7F2 transition. YUAN Xi-ming: Born in 1951 Funded by Key Scientific and Technological Project of Hubei Province (2001 AA102A03)  相似文献   

16.
BaTi4O9-doped Ba0.6Sr0.4TiO3 (BST) composite ceramics were prepared by the conventional solid-state reaction and their structure, dielectric nonlinear characteristics and microwave dielectric properties were investigated. The secondary phase of the orthorhombic structure Ba4Ti13O30 is formed among BST composite ceramics with the increase of BaTi4O9. At the same time, a duplex or bimodal grains size distribution shows fine grains in a coarse grain matrix. The degree of frequency dispersion of dielectric permittivity below T m is increased initially and then decreased with respect to BaTi4O9. As the BaTi4O9 content increases, the tunability of composite ceramics decreases, while the Q value increases. Interestingly, 70 wt% BaTi4O9-doped BST has a tunability ∼4.0% (under 30 kV/cm biasing) versus a permittivity ∼68 and quality factor ∼134.1 (at ∼3.2 GHz). Supported by the Ministry of Science and Technology of China through 973-project (Grant No. 2009CB623302), the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (Grant No.707024), Shanghai Committee of Science and Technology (Grant No. 07DZ22302), and Shanghai Foundation Project under 06JC14070  相似文献   

17.
TiB2-Al2O3 composite powders were produced by self-propagating high-temperature synthesis(SHS) method with reductive process from B2O3-TiO2-AI system. X-ray diffraction(XRD) and scanning electron microscopy(SEM) analyses show the presence of TiB2 and Al2O3 only in the composite powders produced by SHS. The powders are uniform and free-agglomerate. Transmission electron microscopy (TEM) and high resolution electron microscopy (HREM) observation of microstructure of the composite powders indicate that the interfaces of the TiB2-Al2O3 bond well, without any interfacial reaction products. It is proposed that the good interfacial bonding of the composite powders can be resulted from the TiB2 particles crystallizing and growing on the Al2O3 particles surface with surface defects acting as nucleation centers.  相似文献   

18.
Composites consisting of strontium stabilized bismuth oxide (Bi1.14Sr0.43O2.14, SSB) and silver were investigated as cathodes for intermediate-temperature solid oxide fuel cells with doped ceria electrolyte. There were no chemical reactions between the two components. The microstructure of the interfaces between composite cathodes and Ce0.8Sm0.2O1.9 (SDC) electrolytes was examined by scanning electron microscopy (SEM). Impedance spectroscopy measurements show that the performance of cathode fired at 700 ℃ is the best. When the content of Ag2O is 70 wt%, polarization resistance values for the SSB-Ag cathodes are as low as 0.2 Ωcm^2 at 700℃ and 0.29 Ωcm^2 at 650℃. These results are much smaller than some of other reported composite cathodes on doped ceria electrolyte and indicate that SSB-Ag composite is a potential cathode material for intermediate temperature SOFCs.  相似文献   

19.
(PEO) x −(V0.85Mo0.15)2O5(x=0,0.5,1.0) nanocomposite films were prepared by a modified sol-gel method. The structure of the films was analyzed by XRD, and the DC electrical conductivity. Cyclic voltammogram and optical spectral transmittance were investigated. The results show that the (V0.85Mo0.15)2O5 xerogel has a layered structure and its interlayer space increased from 1.3181 nm at x=0 to 1.7897 nm at x=1.0. The introduction of MoO3 improved the DC electrical conductivities of the films due to the generation of V4+ to maintain the electrical neutrality of the oxides. PEO intercalated in the interlayer of (V0.85Mo0.15)2O5 oxides has interaction with the oxides, enhancing the amount of Li+ ions inserted into the interlayer of the oxides. Moreover, the intercalation of PEO into the interlayer of (V0.85Mo0.15)2O5 oxides improved the cathodic electrochromic property in near ultraviolet region and anodic electrochromic property in visible range. JIANG Cong-sheng: Born in 1963 Supported by the Science Foundation of Hubei Province (Grant No. 2001ABB083)  相似文献   

20.
1 IntroductionIt is well known that the performance of monolithicthermoelectric materials can be characterized as figure-of-meritZ,Z=α2σ/κ, where ,α,σandκare the See-beck coefficients ,the electrical conductivity andthe ther-mal conductivity,respectively.In the past years , greatefforts have been made inlookingforthermoelectric mate-rials with a higher Seebeck coefficient ,electrical conduc-tivity and alowerthermal conductivity[1-9].Butfor monol-ithic thermoelectric materials , their f…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号