共查询到19条相似文献,搜索用时 62 毫秒
1.
属性约简是粗糙集理论的重要应用之一.为了对部分标记的数据进行属性约简,一些基于粗糙集的半监督属性约简方法相继被提出,但这些方法在数据信息利用、运行代价、约简质量等方面仍然存在挑战.本文针对混合型分类数据,提出了一种新的基于三支标签传播的半监督属性约简(3WLPME)方法.该方法包括两个过程:三支标签传播(3WLP)和基于混合熵的启发式属性约简(MEHAR).其中,3WLP在经典标签传播算法的基础上,结合三支决策和主动学习思想,对无标签数据进行标注,并更新有标签集和无标签集.迭代执行上述过程直至收敛,可以提升最终的伪标签准确率.在MEHAR中,属性重要度由混合熵度量.基于依赖度和条件熵定义的混合熵,融合了粗糙集的代数表示和信息表示,能更深刻地反映属性的分类能力.本文对3WLP算法和MEHAR算法的有效性进行了理论分析.在UCI数据集上进行了以下仿真实验:3WLP与随机标签传播在伪标签准确率上的对比;不同属性约简算法在约简质量上的对比;3WLPME与其他基于粗糙集的半监督属性约简方法,在约简质量上的对比.实验结果验证了3WLP能获得较高的伪标签准确率;MEHAR在不降低分类准确率的前提下,能获得较小的约简;3WLPME在半监督约简过程中具有更高的效率和稳定性,说明本文所提方法是有效的. 相似文献
2.
本文主要研究基于粗糙集理论的属性约简算法.提出了一种基于属性重要度和相关度的启发式约简算法.并通过算例验证了该算法的可行性和有效性. 相似文献
3.
4.
传统的有监督度量学习算法没有利用大量存在的无标记样本,且得到的度量矩阵复杂,难以了解不同原始特征的重要程度。针对这些情况,提出基于半监督假设的半监督稀疏度量学习算法。根据三样本组约束建立间隔损失函数;基于平滑假设、聚类假设、流形假设这三个半监督假设建立半监督正则项,并利用L_1范数建立稀疏正则项;利用梯度下降法求解目标函数。实验结果表明,该算法学习得到的度量能有效地使不同类别的样本间距离增大,度量矩阵具有稀疏性,分界面穿过低密度区域,该算法在UCI的样本数据集上具有良好的分类准确性。 相似文献
5.
值约简是粗糙集理论的一个重要研究课题。而现有的很多值约简算法。在执行效率上还有待提高。通过对现有的启发式值约简算法的研究,提出了一种新的基于属性值重要性的粗糙集值约简算法,并通过实例分析验证了该算法的可行性和有效性。 相似文献
6.
基于半监督流形学习的人脸识别方法 总被引:1,自引:0,他引:1
如何有效地将流形学习(Manifold learning,ML)和半监督学习(Semi-supervised learning,SSL)方法进行结合是近年来模式识别和机器学习领域研究的热点问题.提出一种基于半监督流形学习(Semi-supervised manifold learning,SSML)的人脸识别方法,它在部分有标签信息的人脸数据的情况下,通过利用人脸数据本身的非线性流形结构信息和部分标签信息来调整点与点之间的距离形成距离矩阵,而后基于被调整的距离矩阵进行线性近邻重建来实现维数约简,提取低维鉴别特征用于人脸识别.基于公开的人脸数据库上的实验结果表明,该方法能有效地提高人脸识别的性能. 相似文献
7.
值约简是粗糙集理论的一个重要研究课题。而现有的很多值约简算法,在执行效率上还有待提高。通过对现有的启发式值约简算法的研究,提出了一种新的基于属性值重要性的粗糙集值约简算法,并通过实例分析验证了该算法的可行性和有效性。 相似文献
8.
基于分歧的半监督学习 总被引:9,自引:0,他引:9
传统监督学习通常需使用大量有标记的数据样本作为训练例,而在很多现实问题中,人们虽能容易地获得大批数据样本,但为数据 提供标记却需耗费很多人力物力.那么,在仅有少量有标记数据时,可否通过对大量未标记数据进行利用来提升学习性能呢?为此,半监督学习 成为近十多年来机器学习的一大研究热点.基于分歧的半监督学习是该领域的主流范型之一,它通过使用多个学习器来对未标记数据进行利用, 而学习器间的"分歧"对学习成效至关重要.本文将综述简介这方面的一些研究进展. 相似文献
9.
10.
基于半监督多示例学习的对象图像检索 总被引:2,自引:0,他引:2
针对基于对象的图像检索问题,提出一种新的半监督多示例学习(MIL)算法.该算法将图像当作包,分割区域的视觉特征当作包中的示例,按"点密度"最大原则,提取"视觉语义"构造投影空间;然后利用定义的非线性函数将包映射成投影空间中的一个点,以获得图像的"投影特征",并采用粗糙集(RS)方法对其进行属性约简;最后利用直推式支持向量机(TSVM)进行半监督的学习,得到分类器.实验结果表明,该方法有效且性能优于其他方法. 相似文献
11.
12.
刘蓉 《电脑编程技巧与维护》2010,(14):4-5
介绍一种基于半监督学习的协同训练(Co-training)分类算法,当可用的训练样本比较少时,使用传统的方法进行分类,如决策树分类,将无法得到用户满意的结果,而且它们需要大量的标记样本。事实上,获取有标签的样本的代价是相当昂贵的。于是,使用较少的已标记样本和大量的无标记样本进行协同训练的半监督学习,成为研究者首选。 相似文献
13.
14.
15.
基于粗糙集的一种属性值约简算法及其应用 总被引:1,自引:0,他引:1
吴尚智 《计算机应用与软件》2009,26(2)
阐述粗糙集理论的基本概念,并且对属性约简和值约简算法进行研究,提出了一种基于粗糙集的属性值约简算法.通过实例介绍该算法的应用.研究表明,该算法不仅能得到最佳的决策规则,而且能够大大降低信息系统所需的存储空间,该算法可以解决各种有关的实际问题. 相似文献
16.
This paper presents a fuzzy rough semi-supervised outlier detection (FRSSOD) approach with the help of some labeled samples and fuzzy rough C-means clustering. This method introduces an objective function, which minimizes the sum squared error of clustering results and the deviation from known labeled examples as well as the number of outliers. Each cluster is represented by a center, a crisp lower approximation and a fuzzy boundary by using fuzzy rough C-means clustering and only those points located in boundary can be further discussed the possibility to be reassigned as outliers. As a result, this method can obtain better clustering results for normal points and better accuracy for outlier detection. Experiment results show that the proposed method, on average, keep, or improve the detection precision and reduce false alarm rate as well as reduce the number of candidate outliers to be discussed. 相似文献
17.
基于Rough Set理论的一种属性值约简算法 总被引:2,自引:0,他引:2
属性值的约简是Rough Set理论的核心内容之一。它的口的就是在保持规则集的分类能力的条件下,删除多余属性值,进一步简化规则集。从而,得到最小的知识库。本文针对Rough Set理论中值约简这个重要问题进行了研究,提出了一种利用决策规则质量的属性值约简算法。该算法比现有的值约简算法更简化,并用实验证明了其有效性。 相似文献
18.