首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The service life of orthotropic steel decks is dependent on the fatigue resistance of rib‐to‐deck welded joints, which is often tested using two kinds of experimental models in terms of the rib loading condition. Different weld root fatigue failure modes have been observed in the different models, but the role of rib loading remains unclear. This paper aims to clarify the effect of rib loadings on the weld root fatigue failure modes at rib‐to‐deck welded joints. The loadings are decomposed into the deck loadings and rib loadings according to the principle of superposition. Formulae of the weld root notch stress intensity factors and T‐stress under rib loadings are developed by multiparameter regression analysis and subsequently used for the local stress analysis. The fatigue failure modes determined from the local stress field agree well with the experimental results. The results reveal that the weld root failure modes depend on the rib loadings but are independent of the weld geometries. The averaged strain energy density (SED) that can capture both weld geometry and loading condition effects is used to correlate the fatigue test data of different weld root failure modes. The SED is capable of evaluating the fatigue strength of the rib‐to‐deck welded joint failed by different weld root failure modes with a narrow scatter band.  相似文献   

2.
Residual stresses and weld defects play a major role in the fatigue behaviour of welded structures, so these effects need to be accounted for in a theoretical analysis. A simplified engineering procedure based on linear‐elastic fracture mechanics is applied to estimate the fatigue behaviour, particularly the limit of endurance. Local geometrical irregularities and pre‐existing flaws, which are typical for this kind of weld, are covered by an overall notch intensity factor instead of a specific stress intensity factor, so the initial flaw size is not needed explicitly in the analysis. The effect of residual stresses can be easily included. The cut‐compliance method was applied to measure the residual stress distribution on the cross‐section of the weld. A welded T‐joint was used as a benchmark. Unexpectedly, compressive residual stresses were found to prevail in the root region. According to the analysis, they contribute to the endurance limit of the considered joint by about 50%. This result was confirmed by fatigue tests where a significant decrease in the fatigue strength after a post‐weld stress relieving heat treatment was observed.  相似文献   

3.
In the present paper a method is described for the fatigue assessment of multi‐axial loaded welded joints in structures made from thin steel sheets. The focus is on seam welds under non‐proportional loading, assuming a constant angular phase shift between cycles leading to stress components acting at the seam welds. Fatigue analyses are using a local stress approach based on stresses derived by Theory of Elasticity. Furthermore, potentials of considering statistical size effects in order to analyse weld start and end points are outlined.  相似文献   

4.
The fatigue behaviour of base metal and weld joints of 1Cr–18Ni–9Ti stainless steel has been studied under uniaxial, torsional and 90° out‐of‐phase loading. A significant degree of additional hardening is found for both base metal and weld metal under 90° out‐of‐phase loading. Both base metal and weld metal have the same cyclic stable stress–strain relationship under torsional cyclic loading and 90° out‐of‐phase cyclic loading. Base metal exhibits higher cyclic stress than weld metal under uniaxial loading, and Young's modulus and yield stress of weld metal are smaller than those of base metal. Weld metal exhibited lower fatigue resistance than base metal under uniaxial and torsional loading, but no significant difference was found between the two materials under 90° out‐of‐phase loading. A large scatter of fatigue life is observed for weld metal, perhaps because of heterogeneity of the microstructure. The Wang–Brown (WB) damage parameter and the Fatemi–Socie (FS) damage parameter, both based on the shear critical plane approach, were evaluated relative to the fatigue data obtained.  相似文献   

5.
针对焊接结构疲劳寿命预测,从动力学的角度提出了一种基于模态叠加法的动态结构应计算方法,并验证了其可行性与正确性,该方法以时变载荷作用下焊接结构的动平衡为基础,考虑结构自身振动加速度对用于评价焊缝疲劳寿命的结构应力的影响,实现了动态载荷下焊接结构的动态结构应力计算,有效地拓宽了主S-N曲线疲劳预测方法的应用领域。  相似文献   

6.
The aim of this work is to present an engineering method based on linear elastic finite element (FE) analyses oriented to fatigue strength assessments of fillet‐welded joints made of steel or aluminium alloys and subjected to mode I loading in the weld toe region where fatigue cracks nucleate. The proposed approach combines the robustness of the notch stress intensity factor approach with the simplicity of the so‐called ‘peak stress method’. Fatigue strength assessments are performed on the basis of (i) a well‐defined elastic peak stress evaluated by FE analyses at the crack initiation point (design stress) and (ii) a unified scatter band (design fatigue curve) dependent on the class of material, i.e. structural steel or aluminium alloys. The elastic peak stress is calculated by using rather coarse meshes with a fixed FE size. A simple rule to calculate the elastic peak stress is also provided if a FE size different from that used in the present work is adopted. The method can be applied to joints having complex geometry by adopting a two‐step analysis procedure that involves standard finite element (FE) models like those usually adopted in an industrial context. The proposed approach is validated against a number of fatigue data published in the literature.  相似文献   

7.
ABSTRACT Fatigue crack growth calculations were performed on offshore tubular joints using the Paris crack growth law. The stress intensity factors required for such calculations were obtained from T‐butt solutions previously proposed by the authors. The applicability of the solutions to tubular joints was first demonstrated by comparing the fatigue life of a base case with that obtained from a mean S–N curve, and the influence on fatigue life of various factors including load shedding, the size of initial defects, weld geometry, etc. was investigated. The solutions were then used to predict the lives of tubular T‐joints from an experimental database. The results show that the solutions underestimate the fatigue life; this underestimation was shown to be primarily due to ignoring the combined effects of load shedding and the intersection stress distribution. In general, however, the trends in the predicted fatigue lives with joint geometry and other details were seen to be superior to predictions from the S–N approach, with the solutions significantly reducing the dependency on loading mode exhibited by the test data.  相似文献   

8.
In this paper, the influence of the residual stress on the fatigue performance of a welded structure under multiaxial loading modes is studied. First, the local stress state at weld toe is modified via introduction of the residual stress, and a new fatigue life estimation model considering the effect of the residual stress is established by modifying our recently proposed critical plane method. Second, the basic theory and procedure of the finite element simulation on the calculation of the welding residual stress are presented. Finally, a numerical simulation of an aluminum alloy flange‐to‐tube welding process is conducted, and the calculated residual stress is verified with X‐ray diffraction measurement. Furthermore, the performance of the proposed fatigue life estimation model is verified by the experimental data obtained in the fatigue test under different loading modes. It confirms that the consideration of the residual stress is important, especially under the out‐of‐phase loading mode.  相似文献   

9.
Fastening elements usually lead to high stress concentrations; fatigue failure thus becomes the most critical failure mode for a fastening element itself or the region around it under fluctuating stresses. A designer should seek the ways of increasing fatigue strength of a joint to ensure the safety of the whole structure. Resistance spot welding is the most preferred method to join metal sheets. The design variables for spot‐weld joints affecting their strengths are basically sheet thickness, spot‐weld nugget diameter, number of spot welds and the joint type as exemplified in tensile shear (TS), modified tensile shear (MTS), coach peel (CP) and modified coach peel (MCP) specimens. In this study, the effects of these parameters on the fatigue life of spot‐weld joints have been investigated. For this purpose, one of the most reliable fatigue assessment models, Coffin–Manson approach, was used. In order to accurately determine the stress and strain states, a nonlinear finite element analysis was carried out taking into account plastic deformations, residual stresses developed after unloading and contacting surfaces. The results provide designers with some guidelines to foresee the impact of design changes on fatigue strength of spot‐weld joints.  相似文献   

10.
Fatigue is a governing design limit state for marine structures. Welded joints are important in that respect. The weld notch stress (intensity) distributions contain essential information and formulations have been established to obtain a total stress fatigue damage criterion and corresponding fatigue resistance curve; a total stress concept. However, the involved weld load carrying stress model does not provide the required estimates and trends for varying geometry dimensions and loading & response combinations. A new one has been developed and performance evaluation for T‐joints and cruciform joints in steel marine structures shows that in comparison with the nominal stress, hot spot structural stress and effective notch stress concept based results up to 50% more accurate fatigue design life time estimates can be obtained. Taking advantage of the weld notch stress formulations, the effective notch stress concept performance has improved adopting a stress‐averaged criterion rather than a fictitious notch radius‐based one.  相似文献   

11.
Fatigue damage of butt‐welded joints is investigated by a damage mechanics method. First, the weld‐induced residual stresses are determined by using a sequentially coupled thermo‐mechanical finite element analysis. The plastic damage of material is then calculated with the use of Lemaitre's plastic damage model. Second, during the subsequent fatigue damage analysis, the residual stresses are superimposed on the fatigue loading, and the weld‐induced plastic damage is considered as the initial damage via an elasto‐plastic fatigue damage model. Finally, the fatigue damage evolution, the relaxation of residual stress, and the fatigue lives of the joints are evaluated using a numerical implementation. The predicted results agree well with the experimental data.  相似文献   

12.
The applicability of and the quality of assessment using the nominal stress, structural stress and notch stress approaches for calculating the fatigue strength of laserbeam welded components made of thin steel sheets has been investigated. For this purpose, the fatigue lives of a longitudinal carrier, an injector and two tube-flange specimens have been determined by tests under constant amplitude loading. Fatigue cracks initiated at sharp root notches on all of these components. While the nominal stress is derived by theory of structural mechanics, the determination of structural and notch stresses is performed using 3D finite element models and solid elements. The structural stress is derived by an extrapolation of surface stress to the fatigue critical notch and the notch stresses by rounding the sharp root notch with a reference radius of rref = 0.05 mm. For all of the concepts used, the endurable stresses have been compared to the design SN-curves recommended by the International Institute of Welding (IIW).On comparing the quality of assessment of the different concepts, the notch stress approach shows the highest scatter. The highest endurable notch stresses occur in specimens with crack initiation at weld ends. These specimens have a very small highly loaded weld length. The lowest endurable stresses are determined for specimens with a long, equally loaded weld. The reason for these findings can be explained by statistical size effects. For an improved fatigue assessment, an easily applicable method is introduced, which takes into account the highly stressed weld length.  相似文献   

13.
The fatigue strength of welded joints can be improved with various post‐weld treatment methods. High‐frequency mechanical impact treatment is a residual stress modification technique that creates compressive residual stresses at the weld toe. However, these beneficial residual stresses may relax under certain loading conditions. In this paper, previously published fatigue data for butt and fillet welded joints subjected to high stress ratios and variable amplitude cyclic stresses were evaluated in relation to the current International Institute of Welding (IIW) recommendations on fatigue strength improvement and a proposed IIW design guideline for high‐frequency mechanical impact‐treated welded joints. The evaluation showed that the current IIW recommendations resulted in both non‐conservative and overly conservative fatigue strength estimations depending on the applied stress level, whereas the proposed fatigue assessment guideline fitted the current data well.  相似文献   

14.
This paper is concerned with an experimental and numerical study of the fatigue behaviour of tubular AlMgSi welded specimens subjected to biaxial loading. In‐phase torsion–bending fatigue tests under constant amplitude loading were performed in a standard servo‐hydraulic machine with a suitable gripping system. Some tests in pure rotating bending with and without steady torsion were also performed. The influence of stress ratio R and bending–torsion stress ratio were analysed. Correlation of the fatigue lives was done using the distortion energy hypothesis (DEH), based on the local stresses and strains. The applicability of the local strain approach method to the prediction of the fatigue life of the welded tubular specimens was also investigated. Static torsion has only a slight detrimental influence on fatigue strength. The DEH (von Mises criterion) based on local stresses in the weld toes was shown to satisfactorily correlate fatigue lives for in‐phase multiaxial stress–strain states. The stress–strain field intensity predictions were shown to have less scatter and are in better agreement with the experimental results than the equivalent strain energy density approach.  相似文献   

15.
About the Influence of Residual Stresses, Weld Geometry and Multiaxial Stress States on the Oprational Fatigue Strength of Welded Constructions from Structural Steels For a fatigue design of welded structures among other influences also the influence of residual stresses, weld geometries and multiaxial stresses must be taken into account. Knowledge about the influence of residual stresses in the high-cycle fatigue region cannot be transformed unconditionally to the behaviour in the finite-fatigue life region or to variable amplitude loading with exceedances of the endurance limit, because the fatigue behaviour depends also on the stress concentration in the weld toe and the related stress relief. Principally, the fatigue strength is improved by a better weld geometry, e.g. by TIG-dressing, by introduction of radii which are big enough. In order to transform data obtained on specimens to components of bigger size criteria like structural or local equivalent stress, first technically detectable crack and size effects must be considered. For a fatigue life calculation for structures under variable amplitude loading a damage sum of D = 0.5 is recommended. While for the evaluation of multiaxial stress states with constant principle stress directions the von Mises criterion can be applied satisfactorily using structural or local stresses in the weld toe. However, conventional hypotheses fail by an overestimation of fatigue life, when the principle stress directions change, e.g. due to a phase difference between normal and shear stresses. Presently, in such cases only an experimental proof of the fatigue behaviour can be performed.  相似文献   

16.
This paper details a study of the application of notch stress intensity theory to the fatigue failure mode analysis of the transition in load‐carrying cruciform welded joints. The weldment fatigue crack initiation point is difficult to predict precisely because it usually occurs in the vicinity of the weld toe or weld root. To investigate the relationship between fatigue failure location and the geometry of the weldments, we analysed the weld toe and root asymptotic notch stress fields were analysed using the notch stress intensity factors on the basis of the Williams' solution in Linear Elastic Fracture Mechanics (LEFM). Numerous configurations of cruciform joints of various plate thicknesses, transverse plate thickness, weld sizes and incomplete penetration size were used to investigate the location of the fatigue failure. The strain energy density (SED) surrounding the notch tip was introduced to unify the scalar quantity and preclude the inconsistency of the dimensionality of the notch stress intensity factors for various notch opening angles. The results of the investigation showed that the SED approach can be used to determine the transition zone for a variety of joint geometries. The validity of the SED criteria was verified by comparing the experimental results of this study with the complied results for load‐carrying cruciform welded joints reported in literature.  相似文献   

17.
The process used to manufacture modern weld structures often lead to weld start and end points. Under cyclic loading, crack initiation occurs predominantly at the weld start. In particular, for special investigations into thin sheet structures, no approach for the determination of the fatigue life has been established thus far. Therefore, in this research, we have attempted to find a general approach for the assessment of weld ends using the notch stress concept. The primary aim was to obtain the real geometry of weld ends with high precision using a three dimensional scanner. We were able to find an idealised weld end model with the mean toe radius of r = 0,2 mm that provides almost the same notch stresses like the real geometry. The applied load cases were longitudinal and transverse tension as well as bending. The crack always occurs at the weld toe. The notch stress S‐N‐curve was derived from the fatigue life of the cyclic testing so that the assessment of weld ends is possible for the first time. Moreover, some conversion rules have been developed so that the idealised weld end geometry can be modelled with an arbitrary toe radius. Going one step further, some analyses have been performed regarding to unify the notch stress concept. The existing results of Olivier – who examined long welds with no start and end points – were re‐evaluated to unify the results of long regular welds with the local weld end under one scatter band. Using the scanned geometry a good agreement could be achieved. The use of an idealised model will be validated soon.  相似文献   

18.
The goal of this investigation was to study the effect of local geometrical variations of the weld on the fatigue strength. Therefore the fatigue behaviour of non-load-carrying cruciform fillet welded joint under tensile loading has been studied parametrically. Several two-dimensional (2D) finite element models of the joint were analysed using plane strain linear elastic fracture mechanics (LEFM) calculations in order to get the magnification function Mk. A maximum tangential stress criterion was used to predict the crack growth direction under mixed mode KI-KII conditions. The derived Mk solution was then applied both for continuous weld toe cracks and also for semi-elliptical toe cracks at the deepest point of the crack front. An experimental crack aspect ratio development curve was used for propagating semi-elliptical cracks. The as-welded condition was assumed with the result that no crack initiation period was considered and stress ranges were fully effective. The Paris crack growth law was used to predict the growth rate. The effects of weld toe radius, flank angle and weld size on the fatigue strength were systematically studied. Finally, predicted fatigue strength values corresponding to different assumed crack sizes were compared with the available test results.  相似文献   

19.
PSA pressure vessels are equipments used in refining industries for cleaning the hydrogen upcoming from the reforming or hydrogen generation unities. In one regular inspection, some embedded cracks were found in the entrance nozzle-head weld. Then, instead of advance its decommissioning and waste much time until the refinery purchase a new vessel, a structural stress analysis using the finite element method was performed in order to obtain the stress field at the site of the crack, considering the real loading cycle. Despite the acting load is only the internal pressure, the nozzle-head weld is a region where a complex stress state is present (bending and axial stresses). ASME VIII Division 2, Appendix 5 addresses this issue by applying a rule for multiaxial fatigue life estimation for non-proportional loading. With ASME estimated fatigue life results, it was applied the British Standard 7910 procedure to decide if the equipment can operate safely. The calculation also assesses the crack growing by using a modified bi-linear Paris law. Finally, it was computed how long the cracks would take to get to their critical size and then retire definitively the equipment.  相似文献   

20.
This paper investigates the geometrical properties of the butt-welded thin and slender specimens and their influence on the fatigue strength. The fatigue tests and the finite element analysis are used to investigate the influence. The weld shape, axial misalignment and angular misalignment and the actual shape of the specimen are studied by the extensive optical geometry measurements. The structural hot spot and the notch stress method are used for the fatigue strength assessment. The results reveal that for thin and slender specimens the straightening under the axial loading is significant and thus the relationship between the structural and the nominal stress is highly nonlinear. The straightening effect is influenced by the slenderness and by the curved shape of the plate near the weld. If these effects are included by applying the geometrically nonlinear analysis the fatigue strength of thin and slender welded specimens in notch stresses at two million load cycles corresponds to that of thick welded specimens. The relationship between the structural and the notch stress is however constant regardless of the specimen straightening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号