首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Metallocene polyethylene/nano-silver coatings were prepared by a facile air-spray method on polymer films. Different from the prevailing strategy to endow polyethylene with antibacterial performance, we used metallocene polyethylene sol and nano-silver as a precursor to deposit coatings on polymers at a relatively low operating temperature. Antibacterial coatings with excellent mechanical properties, water resistance, and low silver release were achieved. The composite coatings were examined in terms of surface characteristics, mechanical properties, and antibacterial activity against two representative bacterial strains including Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The composite coatings exhibited favorable microstructure, good mechanical properties, and suitable crystallinity. The antimicrobial tests indicated that the fabricated composite coatings showed promising antibacterial activity against E. coli and S. aureus. Furthermore, Ag ions released by the composite coating after 30 days were under 1.2 ppb. These results indicated a promising prospect of the composite coating for wide antibacterial applications.  相似文献   

2.
3.
ABSTRACT

This research was purposed at studying the effect of the addition of metal oxide (MO) as antibacterial agent on thermoplastic starch (TPS) properties. TPS/MO biocomposites with 0.1 until 2.0 phr of metal oxide were prepared. Antibacterial activity of TPS and TPS/MO biocomposites against bacteria was investigated. The inhibition zone of biocomposite films was dramatically increased along with the increasing of metal oxides contents. The addition of ZnO content resulted in an increase in inhibition zone for E. coli and S. aureus. The incorporation of MO into TPS/MO biocomposites tends to reduce mechanical properties, the mass loss and T50% of TPS/MO biocomposites.  相似文献   

4.
Chitosan is one of the important biopolymers and it is extracted from exoskeletons of crustaceans in sea food waste. It is a suitable eco-friendly carbon steel corrosion inhibitor in acid media; the deacetylation degree of prepared chitosan is more than 85.16 %, and the molecular weight average is 109 kDa. Chitosan was modified to 2-N,N-diethylbenzene ammonium chloride N-oxoethyl chitosan (compound I), and 12-ammonium chloride N-oxododecan chitosan (compound II) as soluble water derivatives. The corrosion inhibition efficiency for carbon steel of compound (I) in 1 M HCl at varying temperature is higher than for chitosan and compound (II). However, the antibacterial activity of chitosan for Enterococcus faecalis, Escherichia coli, Staphylococcus aureus, and Candida albicans is higher than for its derivatives, and the minimum inhibition concentration and minimum bacterial concentration of chitosan and its derivatives were carried out with the same strain.  相似文献   

5.
The aim of this study was to investigate the change in clindamycin phosphate antibacterial properties against Gram-positive bacteria using the platelet-rich fibrin as a carrier matrix, and evaluate the changes in the antibiotic within the matrix. The antibacterial properties of CLP and its combination with PRF were tested in a microdilution test against reference cultures and clinical isolates of Staphylococcus aureus (S. aureus) or Staphylococcus epidermidis (S. epidermidis). Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) analysis was done to evaluate the changes in the PRF_CLP matrix. Release kinetics of CLP was defined with ultra-performance liquid chromatography (UPLC). According to FTIR data, the use of PRF as a carrier for CLP ensured the structural changes in the CLP toward a more active form of clindamycin. A significant decrease in minimal bactericidal concentration values (from 1000 µg/mL to 62 µg/mL) against reference cultures and clinical isolates of S. aureus and S. epidermidis was observed for the CLP and PRF samples if compared to pure CLP solution. In vitro cell viability tests showed that PRF and PRF with CLP have higher cell viability than 70% after 24 h and 48 h time points. This article indicates that CLP in combination with PRF showed higher antibacterial activity against S. aureus and S. epidermidis compared to pure CLP solution. This modified PRF could be used as a novel method to increase drug delivery and efficacy, and to reduce the risk of postoperative infection.  相似文献   

6.
We have carried out mixed micellization of pentanediyl-α,ω-bis(dimethyl cetylammonium bromide) (G5) with conventional cationic cetylpyridinium chloride (CPC) and nonionic polyoxyethylene (20) cetyl ether (C16E20) in aqueous media and explored their antimicrobial activity in single and binary systems against Escherichia coli (E.coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). The compounds tested showed excellent antibacterial activity: 0.76–3.38 g/l minimum inhibitory concentration (MIC) and were more active against gram +ve bacteria. For surfactant mixtures G5-C16E20 > G5-CPC, the ionic-nonionic binary surfactant showed greater antibacterial activity. The experimental results of this study may be profitably used to understand and predict the antibacterial activity of gemini-conventional surfactant systems and provide valuable information for selection of surfactant for microbiocidal action.  相似文献   

7.
C2-benzaldehyde-C6-aniline double Schiff base derivatives of chitosan were synthesized with positioning protection method for the first time. The structures and properties of the new synthesized products were characterized by Fourier transform infrared spectroscopy, 13C nuclear magnetic resonance, scanning electron microscope image, X-ray diffraction, and elemental analysis. The elemental analysis results indicated that the degrees of substitution of the products were from 39.6% to 48.2%. The synthesized compounds exhibited an excellent solubility in organic solvents. The antibacterial activities of all of the derivatives were tested in the experiment, and the results showed that the prepared chitosan derivatives had significantly improved antibacterial activity of chitosan and C2-benzaldehyde Schiff bases of chitosan toward Staphylococcus aureus (ATCC 25923) and Escherichia coli (ATCC 35218). Antibacterial activity of the Schiff bases against E. coli differs from the substituent at the same position of different anilines and increases as the sequence aniline?>?p-toluidine?>?o-toluidine, and the antibacterial activity of the Schiff bases against S. aureus increases as the sequence p-toluidine?>?aniline?>?o-toluidine. The IC50 of the C2-benzaldehyde-C6-aniline double Schiff base derivatives of chitosan against E. coli and S. aureus is 0.0035 and 0.0031?mg?L?1, respectively, much lower than that of chitosan (0.0064?mg?L?1) and C2-benzaldehyde Schiff bases of chitosan (0.0054?mg?L?1). The cytotoxicity test showed that compared with chitosan and C2-benzaldehyde Schiff bases of chitosan, the prepared chitosan derivatives had lower cytotoxicity against SCG-7901. This paper provided a new method for the synthesis of Schiff bases of chitosan, which was enlightening.  相似文献   

8.
A novel method to synthesize alkylated chitosan with [Bmim]OH basic ionic liquid as alkaline reagent is reported for the first time. Chitosan was alkalized by [Bmim]OH basic ionic liquid before it was reacted with various alkyl halides, and a series of alkylated chitosans with different carbon chain substituents were prepared. The structure of alkylated product was characterized by IR, 1H‐NMR, and XRD. The reusability of the ionic liquid was also investigated, and the experimental results indicated that there was no noticeable change for the degree of substitution (DS) of alkylated chitosan after the ionic liquid was reused for three times. The antibacterial activities of the target products were investigated according their minimum inhibitory concentration (MIC) against K. pneumoniae, P. aeruginosa, E. aerogenes, E. coil, S. epidermidis, and S. aureus, and the results indicated that E‐CTS, B‐CTS, and D‐CTS could exhibit excellent antibacterial activities against P. aeruginosa, and their MIC were 128, 128, and 256 μg mL?1, respectively. Meanwhile, the antibacterial activities of alkylted chitosans were decreased with the growth of the DS or the growth of the carbon chain. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40052.  相似文献   

9.
Copolymer beads (RCCS-4G) with many chloromethyl groups were prepared by treating macroreticular chloromethylstyrene-tetraethyleneglycol dimethacrylate (4G) copolymer beads with chloromethylether. Copolymer beads (RAAS-4G) with benzylamino groups were prepared by treating RCCS-4G with potassium phthalimide. Then the copolymer beads containing phenol derivatives were prepared by treating RAAS-4G with p-hydroxybenzoic acid (pHBA), 2,4-dihydroxybenzoic acid (DHBA), and 3,4,5-trihydroxybenzoic acid (gallic acid, GA) in N,N-dimethylformamide. The antibacterial activity of the obtained resins was examined against Escherichia coli and Staphylococcus aureus. Resins containing phenolic hydroxy groups of 2.3–7.7 mequiv/g were obtained. Antibacterial activity of the resins containing various phenol derivatives against E. coli or S. aureus increased in the order of RAAS-4G-GA > RAAS-4G-DHBA > RAAS-4G-pHBA. The resins containing phenol derivatives exhibited higher antibacterial activity against E. coli than against S. aureus and high activity even against bacteria in NaCl solution. Scanning electron micrographs showed that high antibacterial activity was brought about by the phenolic hydroxyl groups in the resin. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1621–1630, 1997  相似文献   

10.
Poly(l-lactic acid) (PLLA) fiber mats containing two types of crude Garcinia mangostana Linn. (GM) extract [i.e., dichloromethane extract (dGM) and acetone extract (aGM)] were successfully prepared by electrospinning process. Both the neat and the GM-loaded PLLA fibers were smooth, with the average diameters ranging between 0.77 and 1.14 μm. The release characteristics of GM from the GM-loaded PLLA fiber mats were carried out by total immersion method in acetate buffer or simulated body fluid that contained 0.5 % v/v Tween 80 and 3 % v/v methanol (hereafter, A/T/M or S/T/M medium) at either 32 or 37 °C, respectively. The maximum cumulative amounts of GM released from the GM-loaded PLLA fiber mats in the S/T/M medium were greater than those in the A/T/M medium. Moreover, the cumulative amounts of GM released from the aGM-loaded PLLA fiber mats were greater than those from the dGM-loaded PLLA fiber mats in both types of medium. The antibacterial activity of the dGM-loaded PLLA fiber mats was greatest against Staphylococcus aureus DMST 20654, while that of the aGM-loaded PLLA fiber mats was greatest against S. aureus ATCC 25923 and S. epidermidis. Lastly, only the dGM-loaded PLLA fiber mats at extraction ratio of 10 mg mL?1 were toxic to the human dermal fibroblasts.  相似文献   

11.
The aim was to investigate the antibacterial activity of various acids and adhesives with and without antibacterial components against Streptococcus mutans. The antibacterial activities of 35% phosphoric acid (Ultra-Etch), 37% phosphoric acid with benzalkonium chloride (Etch-37), adhesive with chlorhexidine (Peak Universal Bond) and without any agent (PQ1) were investigated by agar-diffusion test. The inhibition-zones were measured after 48 h of incubation. For the tooth-cavity model test; cylindrical cavities were prepared on occlusal dentin surfaces of human molars and divided into four groups (n = 10 cavity/group). Group 1: Ultra-Etch + Peak Universal Bond, Group 2: Ultra-Etch + PQ1, Group 3: Etch-37 + PQ1 were applied. The fourth group without any agent application served as control. The teeth were immersed in 5.8 × 106 cfu/ml of S. mutans solution to infect the cavities for 72 h before the application of the groups. After 72 h, dentin chips were collected from the cavity walls with burs for bacterial counting. Statistical analysis was performed by ANOVA, Bonferroni and Dunnett C tests (p < 0.05). Ultra-Etch and Etch-37 performed similar antibacterial activities in agar-diffusion test. Both acids showed better antibacterial activity compared to adhesives (p < 0.05). The antibacterial activity of PQ1 and Peak Universal Bond was observed to be inactivated by light-polymerization. According to the tooth-cavity model; Group I, II, and III demonstrated reduction in bacterial number and there was no significant difference between them. Antibacterial component additions in etchant and adhesive did not show superior antibacterial activity against S. mutans in both in vitro tests.  相似文献   

12.
《Ceramics International》2020,46(13):20932-20942
Herein, silica carrier was used as underlying structure to prepare composite material loaded with rare earth element Er and Zn. Rare earth elements can improve antimicrobial effects of ZnO due to their specific electronic structure. Er–ZnO/SiO2 hybrid antibacterial material was prepared through sol-gel method and its structure and morphology were characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, inductively coupled plasma emission spectroscopy and Brunauer-Emmett-Teller measurements. E. coli and S. aureus were selected as model bacteria to assess antibacterial activity of prepared hybrid material by plate coating method. Er–ZnO/SiO2 exhibited good antibacterial activity towards E. coli and S. aureus. Increase in Er3+ concentration from 0.12% to 1.10% led to increase in antibacterial performance followed by subsequent decrease. Improving effect of Er relied on the molar ratio of Er doped in ZnO/SiO2 hybrid material. The optimal sample was found to be 0.60%Er–ZnO/SiO2, with antibacterial rates of 93.71% and 70.46% against E. coli and S. aureus, respectively. Antibacterial mechanism was assessed by fluorescence detection of reactive oxygen species. In addition, flame atomic absorption spectrometry was used to measure the amount of released Zn2+. Results also showed that 0.60%Er–ZnO/SiO2 hybrid material generated more reactive oxygen species, released more Zn2+ ions, and had the largest surface area, which improved its antibacterial rate. Thus, Er enhanced antibacterial properties of ZnO/SiO2, providing these composite materials with great potential as antibacterial products.  相似文献   

13.
《Polymer Composites》2017,38(12):2829-2840
The biocompatible polymer films show potential as an alternative to gels and patches used for topical delivery of therapeutics and cosmetics. The physical strength and antimicrobial activity of polymer films are important attributes for their topical applicability. Here, we have investigated the physical properties and antibacterial activity of six commonly used film forming polymers before and after formation of nanocomposites with gold nanoparticles (AuNP). The blank and AuNP loaded polymer films were prepared by solvent casting method and characterized for thickness, tensile strength, burst strength, skin adhesion strength, degree of swelling, and porosity. The antibacterial activity of the composite films was evaluated by zone‐of‐inhibition and spectrophotometric growth inhibition method against Staphylococcus aureus and Escherichia coli . The physical characterization showed that chitosan films casted using 1.5% w/w resulted in 76 MPa of tensile strength, while zein films required 40% w/w to show 23 MPa of tensile strength. The AuNP (250 μM; 35 nm) loaded polymer films showed significantly (p < 0.05) greater burst strength and skin adhesion strength compared with respective blank films. Among the polymers tested, only blank films of chitosan and zein showed antibacterial activity. On the other hand, all the AuNP loaded polymer films showed significantly (p < 0.05) greater antibacterial activity. The AuNP loaded chitosan film showed E. coli growth inhibition similar to tetracycline. Taken together, chitosan‐ and zein‐AuNP nanocomposite films showed better physical properties and antibacterial activity. POLYM. COMPOS., 38:2829–2840, 2017. © 2015 Society of Plastics Engineers  相似文献   

14.
Zeolitic imidazolate framework-67 (ZIF67) or copper(II)-benzene-1,3,5-tricarboxylate (CuBTC)-based chitosan fibers grown in situ on fibers can be used in the development of effective air filters. In this context, herein, metal–organic frameworks (ZIF67 or CuBTC) are grown in situ on chitosan fibers (denoted as C-ZIF67 or C-CuBTC), and the NO gas adsorption performance, particular matter filtration efficiency, and antibacterial properties of the fabricated materials against E. coli and S. epidermidis are investigated. The specific surface areas of C-ZIF67 and C-CuBTC are 311.9 and 140.1 m2 g−1, respectively, whereas that of the untreated chitosan fibers is 0.1 m2 g−1. For C-ZIF67, the NO adsorption efficiency rapidly increases up to 78%; specifically, 70% adsorption is maintained for 65 min. For C-CuBTC, the NO adsorption efficiency rapidly increases up to 54% initially and substantially decreases to 41% after 10 min. Furthermore, C-ZIF67 exhibits a 3.4 times higher NO adsorption capacity than that of C-CuBTC. For C-ZIF67 and C-CuBTC, the filtration efficiencies against PMs are higher than 99%. However, C-CuBTC shows a higher antibacterial activity (99.99%) against E. coli and S. epidermidis compared to C-ZIF67. The C-ZIF67 and C-CuBTC, derived from renewable resources, can be good alternatives for commercial synthetic air filters because they are biodegradable, cost-effective, and environment-friendly.  相似文献   

15.
An aqueous emulsion of chitosan nanoparticles encapsulating silver oxide is prepared from silver nitrate and chitosan. The nanoparticles are positively charged with an average diameter of 300 nm. The dried particle has a spherical shape with a 100 nm diameter. The emulsion is applied onto cotton and delivers a durable antibacterial activity against S. aureus and E. coli, after 20 washings. The coefficient of friction of the treated fabric is similar to that of the untreated cotton fabric. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

16.
For food quality and safety issues, the emergence of foodborne pathogenic bacteria has further accelerated the spread of antibiotic residues and drug resistance genes. To alleviate the harm caused by bacterial infections, it is necessary to seek novel antimicrobial agents as biopreservatives to prevent microbial spoilage. Nanoantimicrobials have been widely used in the direct treatment of bacterial infections. CNMs, formed by chitosan nanoparticles and peptides, are promising antibiotic alternatives for use as excellent new antibacterial drugs against pathogenic bacteria. Herein, the current study evaluated the function of CNMs in the protection of foodborne pathogen Escherichia coli (E. coli) O157 infection using an intestinal epithelial cell model. Antibacterial activity assays indicated that CNMs exerted excellent bactericidal activity against E. coli O157. Assessment of the cytotoxicity risks toward cells demonstrated that 0.0125–0.02% of CNMs did not cause toxicity, but 0.4% of CNMs caused cytotoxicity. Additionally, CNMs did not induced genotoxicity either. CNMs protected against E. coli O157-induced barrier dysfunction by increasing transepithelial electrical resistance, decreasing lactate dehydrogenase and promoting the protein expression of occludin. CNMs were further found to ameliorate inflammation via modulation of tumor factor α, toll-like receptor 4 and nuclear factor κB (NF-κB) expression via inhibition of mitogen-activated protein kinase and NF-κB activation and improved antioxidant activity. Taken together, CNMs could protect the host against E. coli O157-induced intestinal barrier damage and inflammation, showing that CNMs have great advantages and potential application as novel antimicrobial polymers in the food industry as food biopreservatives, bringing new hope for the treatment of bacterial infections.  相似文献   

17.
Chitosan, a biocompatible, biodegradable, nontoxic polymer, is prepared from chitin, which is the second most naturally occurring biopolymer after cellulose. Schiff base of chitosan, sorbyl chitosan, and p‐aminobenzoyl chitosan were synthesized working under high‐intensity ultrasound and their antimicrobial properties were analyzed against Escherichia coli, Staphylococcus aureus, and Aspergillus niger. The structures of the derivatives were characterized by FTIR spectroscopy and elemental analysis. The results of antimicrobial activities indicated that the antimicrobial activities of the derivatives increased with increasing the concentration. The antibacterial activity of schiff base of chitosan against E. coli was stronger, while acylated chitosan had better inhiting effect on S. aureus than others. It was also found that the antifungal activities of the derivatives were stronger than that of chitosan, and schiff base of chitosan was obviously superior to acylated chitosan. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
Ninglin Zhou  Na Meng  Yinchen Ma  Jun Zhang  Li Li  Jian Shen 《Carbon》2009,47(5):1343-1678
A graphite oxide (GO)/heparin-benzalkonium chloride (C12) composite was synthesized. The composite was characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). XRD data showed that spacing between layers of GO increased from 0.59 to 3.256 nm. This enlarged layer spacing suggested that heparin-C12 complex intercalated completely in between layers of GO. FTIR also confirmed intercalation of heparin-C12 complex into GO gallery. In vitro release rate of heparin from GO-heparin-C12 was monitored for 30 days. Heparin released at a very fast rate from the composite matrix in the first day. The release slowed down significantly after the first day and continued for 30 days. In addition, antibacterial activity of the composite against Escherichia coli (E. coli) and Staphlococcus aureus (S. aureus) was evaluated using zone of inhibition and colony count assays. Both GO-heparin-C12 and GO-C12 clearly showed antibacterial activity against E. coli and S. aureus while GO alone has a relatively low activity against S. aureus and almost no effect on E. coli.  相似文献   

19.
Silver nanoparticles (AgNPs) were successfully synthesized from the reduction of Ag+ using AgNO3 solution as a precursor and Brassica rapa var. japonica leaf extract as a reducing and capping agent. This study was aimed at synthesis of AgNPs, exhibiting less toxicity with high antibacterial activity. The characterization of AgNPs was carried out using UV–Vis spectrometry, energy dispersive X-ray spectrometry, fourier transform infrared spectrometry, field emission scanning electron microscopy, X-ray diffraction, atomic absorption spectrometry, and transmission electron microscopy analyses. The analyses data revealed the successful synthesis of nano-crystalline Ag possessing more stability than commercial AgNPs. The cytotoxicity of Brassica AgNPs was compared with commercial AgNPs using in vitro PC12 cell model. Commercial AgNPs reduced cell viability to 23% (control 97%) and increased lactate dehydrogenase activity at a concentration of 3 ppm, whereas, Brassica AgNPs did not show any effects on both of the cytotoxicity parameters up to a concentration level of 10 ppm in PC12 cells. Moreover, Brassica AgNPs exhibited antibacterial activity in terms of zone of inhibition against E. coli (11.1?±?0.5 mm) and Enterobacter sp. (15?±?0.5 mm) which was higher than some previously reported green-synthesised AgNPs. Thus, this finding can be a matter of interest for the production and safe use of green-AgNPs in consumer products.  相似文献   

20.
The objective of the present work is to improve the surface area of aerogel via supercritical carbon dioxide (sc · CO2) treatment and thus to obtain the chitosan derivative. The resulting mesoporous material exhibits the typical characteristics of aerogels such as high porosity and high surface area. The aerogels were characterized using FTIR, SEM, TEM, and thermal analysis. The specific surface areas and porosities of aerogels were determined using N2 adsorption. The antibacterial assays were done using E. coli. The prepared chitosan aerogels show important properties such as biocompatibility, non-toxicity, and antibacterial activity, making them suitable for biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号