首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herein, we report the synthesis of highly yielded bismuth-telluride (Bi2Te3) nanoparticles at 50 °C by direct wet chemical route in which the bismuth and tellurium precursors have been dissolved in deionised water, ethylene glycol and hydrazine hydrate. This method is very facile, inexpensive and less hazardous and ensures almost complete yield of the precursors. The powder product was well characterised by powder X-ray diffraction, UV-Vis spectroscopy, Fourier transform infrared spectroscopy, energy dispersive X-ray diffraction, transmission electron microscopy and scanning electron microscopy. It is investigated that the synthesised powder has a rhombohedral structure of Bi2Te3 with average diameters of the particles about 35 nm. Thus, the synthesis process has been modified to design nanostructures of thermoelectric materials with related crystal structures.  相似文献   

2.
Bi2S3 with different morphologies (nanoparticles, nanorods and nanotubes) was synthesized using bismuth nitrate pentahydrate (Bi(NO3)3·5H2O) and two kinds of sulfur sources (CH3CSNH2 and NH2CSNH2) in different solvents (water, ethylene glycol and propylene glycol) via a microwave radiation method at 180 W for 20 min. X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) indicated that all of the products are orthorhombic Bi2S3 phase of nanoparticles, nanorods and nanotubes, influenced by the sulfur sources and solvents. Formation mechanisms of the products with different morphologies are also proposed.  相似文献   

3.
Different morphologies of nanostructured bismuth sulfide (Bi2S3) including nanotubes and nanorods have been prepared by solvothermal synthesis at a low temperature of 120 °C for 12 h using various mixed solvents as the reaction medium and urea as the mineralizer. X-ray diffraction analysis showed that all the as-prepared Bi2S3 samples are orthorhombic phase. Transmission electron microscopy analysis showed that the morphologies of the nanostructures are mainly related to the viscosity and surface tension of the mixed solvent used in the solvothermal synthesis.  相似文献   

4.
Three-dimensional snowflake-like bismuth sulfide nanostructures were successfully synthesized by simple refluxing at 160 °C in ethylene glycol, using bismuth citrate and thiourea as reactants. The crystal structures and morphologies of the products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and energy dispersive X-ray spectroscopy (EDX). The Bi2S3 nanostructure was built up by highly ordered one-dimensional Bi2S3 nanorods, which was aligned in an orderly fashion. Ethylene glycol plays a critical role in the creation of bismuth sulfide three-dimensional nanostructures, which serves as an excellent solvent and structure director. Bismuth citrate, a linear polymer, also makes for the formation of the three-dimensional nanostructures.  相似文献   

5.
Anatase TiO2 nanoparticles and other three different morphologies of titanate nanostructures such as nanotubes, nanosheets and nanowires were successfully prepared by hydrothermal method. The structures and morphologies of the final products were characterized with field-emission scanning electron microscopy (FE-SEM). Phase analysis was carried out using X-ray diffraction (XRD). A novel formation mechanism from anatase TiO2 nanoparticles to titanate nanowires is proposed based on FE-SEM. The gas sensing properties to ethanol were also investigated. The results indicate that nanotubes, nanosheets, nanowires show much less resistance and larger response than nanoparticles.  相似文献   

6.
The present work consists of synthesis and characterization of a novel thermoelectric material polyaniline (PANI)-bismuth telluride (Bi2Te3) nanocomposite using simultaneous electrochemical reactions and deposition method. The inorganic bismuth nitrate has been used as a dopant for polyaniline to achieve high electrical conductivity. A semi-batch mode of operation has been employed to control the rate of deposition of an individual component and thus the molecular architecture of the composite. The electro-deposited composite film on ITO coated glass substrate has been characterized by X-ray diffraction analysis (XRD), FTIR analysis, scanning electron microscope (SEM), and transmission electron microscope (TEM). The microscopic analysis reveals the formation of rod-like nanostructures of diameter less than 100 nm. It has been found that smaller molecules of Bi2Te3 are dispersed in the macromolecules of PANI. The nanocomposite has been characterized by thermoelectric power.  相似文献   

7.
N-type thermoelectric bismuth telluride (Bi2Te3) and bismuth sulfide (Bi2S3) were deposited on virgin carbon fiber (VCF) and recycled carbon fiber (RCF) substrates by electrodeposition. The effects of annealing on the surface morphology and the Seebeck coefficient of the Bi2Te3 and Bi2S3 films were investigated. A nearly stoichiometric N-type Bi2Te3 was obtained from an electrolyte solution of 8 mM of Bi(NO3)3.5H2O and 10 mM of TeO2, which displayed the highest Seebeck coefficient of ?20.01 and ?13.0 µV/K for VCF and RCF, respectively. The deposition of Bi2S3 was slightly off-stoichiometry, but the improvement was still significant with a Seebeck coefficient of ?16.3 and ?12.4 µV/K for VCF and RCF, respectively. The effect of varying the annealing temperature (275°C and 350°C) and annealing time (2 and 3 hours) was studied on a nearly stoichiometric N-type Bi2Te3. The result shows an improvement in the Seebeck coefficient by 1.51–1.24 times at 350°C for 2 hours.  相似文献   

8.
Bismuth telluride (Bi2Te3) nanorods (NRs) of n-type thermoelectric materials were prepared using an electrogenerated precursor of tellurium electrode in the presence of Bi3+ and mercapto protecting agent in aqueous solution under atmosphere condition. The optimal preparation conditions were obtained with ratio of Bi3+ to mercapto group and Te coulomb by photoluminescence spectra. The mechanism for generation of Bi2Te3 precursor was investigated via the cyclic voltammetry. The highly crystalline rhombohedral structure of as-prepared Bi2Te3 NRs with the shell of Bi2S3 was evaluated with high resolution transmission electron microscopy (HRTEM) and powder X-ray diffraction (XRD) spectroscopy. The near-infrared absorption of synthetic Bi2Te3 NRs was characterized with spectrophotometer to obtain information of electron at interband transition. The thermoelectric performance of Bi2Te3 NRs was assessed with the result of electrical resistivity, Seebeck coefficient, thermal conductivity, and the figure of merit ZT parameters, indicating that thermoelectric performance of as-prepared Bi2Te3 nanocrystals was improved by reducing thermal conductivity while maintaining the power factor.  相似文献   

9.
通过液相法制备Bi2Te3纳米管,设计并优化了Co离子的掺磁方案。通过扫描电镜、透射电镜、X射线衍射、红外光谱和能量色散X射线光谱对制备的样品进行了结构表征。实验结果表明,液相法可制备出晶相良好的Bi2Te3纳米管、Co离子均匀掺杂的Bi2Te3纳米结构样品。  相似文献   

10.
《Materials Letters》2006,60(17-18):2294-2298
Single-crystalline Bi2S3 nanocrystals with urchinlike and rod-like morphologies have been successfully synthesized using Bi2O3, HCl, Na2S2O3 and ethylene glycol (EG) by a simple and fast microwave heating method. Both urchinlike and rod-like Bi2S3 nanostructures could be formed under microwave heating at 190 °C for 30 s. Urchin-like Bi2S3 nanostructures were prepared using sodium dodecyl sulfate (SDS) or in the absence of any surfactant. However, Bi2S3 nanorods were obtained in the presence of cetyltrimethylammonium bromide (CTAB). The products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), electron diffraction (ED) and ultraviolet-visible (UV-Vis) absorption spectra.  相似文献   

11.
TiO_2 nanostructures with strong interfacial adhesion and diverse morphologies have been in-situ grown on Ti foil substrate through a multiple-step method based on conventional plasma electrolytic oxidation(PEO) technology, hydrothermal reaction and ion exchange process. The PEO process is critical to the formation of TiO_2 seeding layer for the nucleation of Na_2Ti_3O_7 and H_2Ti_3O_7 mediates that are strongly attached to the Ti foil. An ion exchange reaction can finally lead to the formation of H_2Ti_3O_7 nanostructures with diverse morphologies and the calcination process can turn the H_2Ti_3O_7 nanostructures into TiO_2 nanostructures with enhanced crystallinity. The morphology of the TiO_2 nanostructures including nanoparticles(NP), nanowhiskers(NWK), nanowires(NW) and nanosheets(NS) can be easily tailored by controlling the NaOH concentration and reaction time during hydrothermal process. The morphology, composition and optical properties of TiO_2 photocatalysts were analyzed using scanning electron microscope(SEM), X-ray diffraction(XRD), photoluminescence(PL) spectroscopy and UV–vis absorption spectrum. Photocatalytic tests indicate that the TiO_2 nanosheets calcined at 500?C show good crystallization and the best capability of decomposing organic pollutants. The decoration of Ag cocatalyst can further improve the photocatalytic performance of the TiO_2 nanosheets as a result of the enhanced charger separation efficiency. Cyclic photocatalytic test using TiO_2 nanostructures grown on Ti foil substrate demonstrates the superior stability in the photodegradation of organic pollutant, suggesting the promising potential of in-situ growth technology for industrial application.  相似文献   

12.
This paper examines the formation of arrays of interlayer nanostructures in layered crystals grown by directional solidification and the Bridgman method. Sb2Te3 and Bi2Te3 layers are shown to contain steplayered structures with nanostructured islands on them. Atomic force microscope images of interlayer nanostructures in such crystals are analyzed in terms of the physics of fractals and self-organization processes.  相似文献   

13.
Single-phase Bi0.5Sb1.5Te3 compounds have been prepared by hydrothermal synthesis at 150 °C for 24 h using SbCl3, BiCl3 and tellurium powder as precursors. X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) have been applied to analyze the phase distributions, microstructures and grain sizes of the as-grown Bi0.5Sb1.5Te3 products. It is found that the hydrothermally synthesized Bi0.5Sb1.5Te3 nanopowders have a morphology dominated by irregular hexagonal sheets due to the anisotropic growth of the crystals. The Bi0.5Sb1.5Te3 nanosheets are parallelly stacked in certain direction to form sheet-agglomerates attribute to the temperature gradients in the solution.  相似文献   

14.
Polycrystalline nanotubular Bi2Te3 could be prepared via a high-temperature solution process using nanoscale tellurium, decomposed from trioctylphosphine oxide (TOPO) extracted tellurium species (Te-TOPO), as sacrificial template. The formation of such tubular structure is believed to be the result of outward diffusion of Te during the alloying process. The electrical properties (Seebeck coefficient and electrical conductivity) of the polycrystalline nanotubular Bi2Te3 have been studied and the experimental results show that the electrical conductivity is approximately three orders of magnitude smaller than bulk bismuth telluride materials mainly due to the much larger resistance brought by the insufficient contact between the nanotubular structures.  相似文献   

15.
《Materials Letters》2005,59(2-3):319-321
A photochemical reaction route was developed to synthesize bismuth selenide (Bi2Se3) nanoparticles and nanorods. In an aqueous solution, bismuth nitrate (Bi(NO3)3) reacted with sodium selenosufate in the presence of reducing agent and complexing agent, and the dispersed Bi2Se3 nanoparticles were obtained with the average size of 35 nm. The nanorods were prepared via an alumina template route in the same solution. We carried out experiments to study the formation mechanism in the morphology control of the products and found that series of factors played an effective role including the irradiation time, pH value, the reducing agents and the species of complexing agents. The products were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM).  相似文献   

16.
Bi, Te, and Bi2Te3 nanoparticles have been prepared by reducing bismuth salts, telluric acid, and their decomposition products with supercritical isopropanol in opal pores.  相似文献   

17.
Bismuth tellurium selenide (Bi2TeySe3−y) nanoparticles for thermoelectric applications are successfully prepared via a water-based chemical reaction under atmospheric conditions. The nanostructured compound is prepared using a complexing agent (ethylenediaminetetraacetic acid) and a reducing agent (ascorbic acid) to stabilize the bismuth precursor (Bi(NO3)3) in water and to favor the reaction with reduced sources of tellurium and selenium. The resulting powder is smaller than ca. 100 nm and has a crystalline structure corresponding to the rhombohedral Bi2Te2.7Se0.3. The nanocrystalline powder is sintered via a spark plasma sintering process to obtain a sintered body composed of nano-sized grains. Important transport properties of the sintered body are measured to calculate its most important characteristic, the thermoelectric performance. The results demonstrate a relationship between the nanostructure of the sintered body and its thermal conductivity.  相似文献   

18.
At room temperature, two different morphological nanoscaled BiOxF3 − 2x (BiOF nanosheets and Bi26O38F2 nanorods) have been prepared via a simple solution-based route in the presence of diethanolamine (DEA) and NaOH. The compositions and morphologies of bismuth oxyfluoride can be selectively prepared by varying the type of additives. The products were characterized by X-ray diffraction (XRD), energy-disperse X-ray analysis (EDXA), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray photoelectron spectrum (XPS). A possible mechanism was introduced to explain the formation of the products.  相似文献   

19.
The pulsed magnetron sputtering technique was applied for the preparation of layers of Bi2Te3 and Sb2Te3. Target materials were synthesized in evacuated quartz ampoules by melting elemental powders mixed in stoichiometric proportions. The structure and microstructure of targets and prepared films were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis. Thermoelectric properties were defined by the Seebeck coefficient and electrical conductivity measurements in the temperature range 320-430 K. The layers were deposited at various powers (0.09-0.20 kW) and currents (0.07-0.16 A) at an argon pressure of about 3.0 Pa. The efficiencies of thermoelectric power obtained for bismuth telluride and antimony telluride were 2-4×10−4 and 2-6×10−3 W K−2 m−1, respectively. The synthesized materials were used for the fabrication of thermoelectric couples with Bi2Te3 as the n-type material and Sb2Te3 as the p-type material. The thermocouples were annealed under vacuum to obtain optimum thermoelectric properties. The Seebeck coefficient of thermocouples was evaluated by a Seebeck scanning microprobe [Platzek D, Karpinski G, Stewie C, Muchilo D, Müller E. Proceedings of the second European conference on thermoelectrics, Poland, Cracow, September 15-17, 2004].  相似文献   

20.
The optimization of the thermal co-evaporation deposition process for n-type bismuth telluride (Bi2Te3) thin films deposited onto polyimide substrates and intended for thermoelectric applications is reported. The influence of deposition parameters (evaporation rate and substrate temperature) on film composition and thermoelectric properties was studied for optimal thermoelectric performance. Energy-dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy confirmed the formation of Bi2Te3 thin films. Seebeck coefficient (up to 250 μV K− 1), in-plane electrical resistivity (≈10 μΩ m), carrier concentration (3×1019-20×1019 cm− 3) and Hall mobility (80-170 cm2 V1 s− 1) were measured at room temperature for selected Bi2Te3 samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号