首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
煤气化是煤清洁利用的关键技术之一。利用过程模拟软件Aspen Plus建立气化炉模型可以低成本、低风险和高效率地评估煤气化性能和考察各操作条件对气化产物的影响,寻找最佳操作点。本文总结了煤气化模型建立的基本过程和国内外基于Aspen Plus开发的气化炉模型,分析了各种气化炉模型的区别与联系。  相似文献   

2.
基于Aspen Plus的粉煤气化模拟   总被引:6,自引:0,他引:6  
以Aspen Plus为模拟工具,选择反应平衡模型,并应用Gibbs自由能最小化方法建立了Shell粉煤气化模型;通过对神华、沾化和天碱煤种的气化模拟,对建立的模型进行了检验,结果表明:用N2输送粉煤的气化过程能够很好地模拟,而用CO2输送粉煤的气化过程模拟偏差较大.以沾化煤种为例,检验了气化炉散热损失取煤总热值约2%的合理性;研究了不同操作条件下的气化性能,结果表明:提高温度和压力可使气化过程得到强化.  相似文献   

3.
东赫  刘金昌  解强  党钾涛  王新 《化工进展》2016,35(8):2426-2431
利用Aspen Plus、基于热力学平衡模型对GSP煤粉气化炉、GE水煤浆气化炉及四喷嘴对置式水煤浆气化炉的气化过程建模。根据煤颗粒热转化的历程,将煤气化过程划分为热解、挥发分燃烧、半焦裂解及气化反应4个阶段,利用David Merrick模型计算热解过程,采用Beath模型校正压力对热解过程的影响,选用化学计量反应器模拟挥发分燃烧反应,编制Fortran程序计算半焦裂解产物收率,最后基于Gibbs自由能最小化方法计算气化反应。结果表明,采用建立的气流床气化过程模型模拟工业气化过程的结果与生产数据基本吻合,对GSP煤粉气化炉、GE水煤浆气化炉及四喷嘴对置式水煤浆气化炉等3种气化炉有效气成分(CO+H2)体积分数模拟结果的误差均不超过2%,建立模型的可靠性得到验证。  相似文献   

4.
余海清 《山东化工》2011,40(7):20-23
以河南某煤种为反应原料,采用Aspen Plus流程模拟软件对水煤浆气化工艺过程进行了流程模拟,考察分析了气化炉内的氧煤比和煤浆浓度等原料条件以及气化温度和压力等操作条件对气化反应结果的影响,并将模拟结果与实验结果进行比较,结果表明:模型基本正确,在误差许可范围内,模拟结果与气化实验结果基本一致;氧煤比、水煤浆浓度和气化温度是影响气化反应结果的主要因素;气化压力则对煤气化反应结果几乎没有影响,但是加压气化有利于降低后续工段合成气压缩能耗。  相似文献   

5.
肖祥  周臻  黄歆雅 《广东化工》2012,39(18):22-24
文章以过程模拟软件Aspen Plus为工具,建立了以纯氧为气化剂的气流床煤气化的数学模型,模拟计算了Texaco气化炉的制气过程;并利用该模型模拟研究了氧煤比和水煤浆浓度对煤气化指标的影响。结果表明:水煤浆浓度和氧煤比是影响水煤浆气化过程和出口煤气成分的主要因素,同时提出了提高出口煤气有效成分(CO+H2)的措施。  相似文献   

6.
运用Gibbs自由能最小化方法模拟气流床煤气化炉   总被引:23,自引:0,他引:23  
基于 Aspen Plus工业系统流程模拟软件 ,运用 Gibbs自由能最小化方法建立了气流床煤气化炉的模型 .研究了气化炉的主要操作参数 (即水煤浆浓度、氧煤比、碳转化率和气化温度 )对气化结果的影响 .对模拟结果进行了分析 ,发现模型基本正确 ,可应用于一些反应机理复杂的气化工艺的化学和热力学平衡计算 .模拟结果表明 ,氧煤比和水煤浆浓度是影响气化炉出口煤气组成的主要因素 ,气化炉温度随着氧煤比的增加而增加 ,也随着水煤浆浓度的增加而增加 .结果还表明 ,氧煤比对气化结果的影响比水煤浆浓度的影响更为显著  相似文献   

7.
郑志行  张家元  李谦  周浩宇 《化工进展》2021,40(8):4165-4172
基于Aspen Plus软件建立了GE气流床煤气化的平衡模型和动力学模型,计算了气化的煤气组成和碳转化率。模型分为热解、气化和气液分离三个阶段。其中,气化阶段又分为初步气化和气化重整,从而获得气化产物在恒定温度下的分布。平衡模型的气化阶段使用了吉布斯反应器RGIBBS,基于吉布斯自由能最小化原理对体系内的气化产物进行计算;动力学模型的气化阶段使用了全混流反应器RCSTR,基于煤气化反应的动力学机理对体系内的气化产物进行计算。模拟值与GE气化炉的实际工程数据进行了对比,结果表明,平衡模型可在一定程度上反映气化结果的变化趋势,但预测结果的准确性有所欠缺,而基于气化反应机理建立的动力学模型能很好地预测GE气化炉的气化结果。对动力学模型中的全混流反应器进行反应时间设定,可以对GE气化炉生产提供一定的指导,结果表明:反应停留时间为3.5s时就可以达到很好的气化效果。温度是影响气化反应速率及产物分布的重要因素,利用煤气化的动力学模型模拟了气化温度对气体组成及碳转化率的影响,结果表明:随着气化温度的升高,CO含量逐渐增加,H2含量基本不变,CO2含量逐渐减小,碳转化率逐渐升高。  相似文献   

8.
原满  刘亮  田红  朱超 《广东化工》2012,(12):123-125
文章以过程模拟软件Aspen Plus为工具,建立了以高温空气为气化剂的固定床煤气化的数学模型,模拟计算了逆流式固定床气化的制气过程;并利用该模型模拟研究了不同空煤比以及不同的空气预热温度对煤气化指标的影响,结果表明:在相同空煤比与汽煤比的工况下,提高空气的预热温度可以使气化过程得到强化。  相似文献   

9.
为研究Shell干煤粉气化特点,利用Aspen Plus模拟软件为工具,建立Shell气化炉模型。通过模拟Shell干煤粉气化的压力、氧煤比、蒸汽煤比对气化过程的影响,结果表明,增加压力能够使合成气中的甲烷含量升高,氧煤比和蒸汽煤比对气化温度和合成气组成有重要影响。气化温度随氧煤比的增加而升高,有效气体摩尔分数先增加后减少,蒸汽煤比可以调节气化反应温度。对屯留煤来说,Shell煤气化的最佳氧煤比为0.74~0.80kg/kg,反应温度为1475.6~1580.17℃,最佳蒸汽煤比为0.09~0.13kg/kg,相对应的反应温度为1630.60~1532.11℃。  相似文献   

10.
张悦  李平 《广东化工》2016,(14):16-17
运用Aspen Plus软件,建立GSP粉煤气化过程的模型,选择合适的反应模块,利用Gibbs自由能最小原料对宁东羊肠湾煤进行气化模拟,参照实际生产数据,并将模拟结果与实际生产进行对比,结果相吻合。因此该模型能预测气体产物,同时对实际生产起指导和优化。  相似文献   

11.
随着我国的环境日趋恶化,环境保护越来越受到重视,实现煤的清洁利用是非常必要的,实现煤清洁利用的有效途径可用到煤气化技术。采用Aspen Plus模拟软件建立煤气化反应模型,通过模拟数据与实际数据的对比评估,可以获得大量实验室难以得到的宝贵数据,进而推进优化煤气化技术的研究进展。通过模拟论证及理论分析,Aspen Plus模拟软件应用于煤气化反应模拟是可行的,对于实际煤气化应用具有一定的借鉴意义。  相似文献   

12.
为研究GSP干煤粉气化反应特点,以Aspen Plus模拟软件为工具,选择Gibbs自由能最小化建立气化炉模型。通过模拟GSP干煤粉气化的压力、氧煤比、蒸汽煤比及不同输送载体对气化过程的影响,结果表明:压力增加可使粗煤气中甲烷含量增加;氧煤比和蒸汽煤比影响着气化温度和有效气组成;输送载体切换为二氧化碳后可使有效气增加2%。该模拟计算对于GSP干煤粉气化工业操作有一定借鉴意义。  相似文献   

13.
非支配排序进化策略求解煤气化多目标优化问题   总被引:1,自引:1,他引:0       下载免费PDF全文
张宇  鄢烈祥  李国建  史彬 《化工学报》2013,64(12):4628-4633
应用非支配排序进化策略(non-dominated sorting evolution strategy,NSES)对煤气化多目标优化问题进行求解。通过解两个经典测试函数,并与NSGA-2算法进行比较,表明了非支配排序进化策略的有效性和优势。应用Aspen Plus流程模拟软件对煤气化过程进行了模拟计算。在此基础上,以氧煤比、水煤比、气化炉的压力为操作变量,分别对冷煤气效率和有效气产出率两个目标进行灵敏度分析。分析结果表明,3个变量对气化结果评价指标均有不同程度的影响。将非支配进化策略用于煤气化过程的多目标优化模型的求解,得到了Pareto最优前沿面,为确定冷煤气效率和有效气产出率两个目标的协调提供了依据。  相似文献   

14.
煤气化技术作为煤化工工艺过程中十分关键的技术之一,能够有效地实现煤炭清洁利用,对提高我国能源利用效率、改善生态环境等有着重要的意义。对于煤气化过程进行计算机模拟,有助于深入理解其过程本质,能够有效地节省成本、实现优化设计和优化操作。Aspen Plus软件是在众多工业领域如化工、炼油、节能等广泛应用的大型通用流程模拟软件,其在煤气化中的应用也逐步受到研究者的重视。本文简介了Aspen Plus模拟煤气化方法,综述了近年来该软件在我国煤气化中的应用成果和发展情况,指出了该软件的应用前景和发展方向,为我国煤化工的研究和技术的应用提供一定的参考。  相似文献   

15.
采用Aspen Plus软件对干粉煤气化工艺进行计算,分别研究了相同进料条件下不同煤质对煤气化温度、出口合成气组成的影响,研究发现煤质中碳含量直接影响合成气气化炉气化温度,而煤质中碳氢含量也会影响合成气中碳氢含量。计算结果可用于工艺及设备设计。  相似文献   

16.
以Aspen Plus软件为模拟工具,选择反应平衡模型,应用Gibbs自由能最小化方法建立干煤粉气化炉模型并进行模拟研究。模拟分析了气化炉的主要参数(压力、氧煤比和蒸汽煤比)对气化结果的影响,结果表明:压力增加可使甲烷含量增加,蒸汽煤比、氧煤比是影响粗煤气出口温度和组成的主要因素。  相似文献   

17.
刘亮  原满  田红  朱超  杨哲 《化学工程》2013,(7):64-68
为进一步研究BGL碎煤熔渣气化技术的气化性能,探寻BGL气化炉的最佳操作参数,采用Aspen Plus工业系统流程模拟软件,遵循Gibbs自由能最小化方法以及反应平衡模型建立BGL气化炉模型;通过对3种不同煤种的气化模拟,对模型进行检验,结果表明:该模型与BGL气化炉的实际运行的结果吻合程度比较高,可应用于一些反应机理复杂的气化工艺的化学和热力学平衡计算,并研究了不同操作参数对BGL气化炉气化性能的影响。以安徽淮北烟煤为例,模拟不同氧气预热温度、氧煤比及汽煤比对出口有效产气率的影响。模拟结果表明:出口产气率随着氧煤比与氧气预热温度的升高而增加,而氧煤比增加到一个特定值时则下降,在氧煤比(质量比)为0.36时,有效产气率最高;产气率随汽煤比升高而下降。  相似文献   

18.
煤炭是我国的主要能源,地下煤气化技术是未来煤炭工业发展的重要技术之一。根据不同种类煤炭慢速热解过程中主要元素迁移规律建立了煤炭热解预测模型。参考地下煤气化过程特点对气化反应进行简化,确定了需要考虑的主要反应后选择合适的动力学参数,编写反应动力学方程嵌入Aspen Plus流程模拟软件中,结合煤炭热解模型建立地下煤气化动力学模型。对比模拟结果与试验数据,并进行了误差分析,结果表明:模型预测产出气组成的绝对误差均在12%以内,为地下煤气化工艺设计提供了一定的参考价值。  相似文献   

19.
《煤化工》2015,(6):10-13
以热解粉焦为原料,利用Aspen Plus模拟软件,建立了气化炉模型,在修正和验证的基础上,进行了气化过程的模拟计算,同时考察了影响气化过程的主要指标。结果表明,利用Aspen plus软件建立的模型,能够准确模拟气流床气化过程,计算误差在许可范围内;热解粉焦较热解用煤更适宜于气流床气化,热解粉焦气化粗合成气中有效气的体积分数达到95.6%,冷煤气效率为80.6%;气化压力的提高使得合成气中甲烷含量升高,但对反应温度和有效合成气含量影响较小;氧焦比和蒸汽焦比对气化温度和合成气组成有重要影响,其中,实验用热解粉焦的最佳氧焦比为0.81 kg/kg~0.84 kg/kg,最佳蒸汽焦比为0.09 kg/kg~0.11 kg/kg。  相似文献   

20.
煤制天然气过程模拟与?分析   总被引:1,自引:0,他引:1  
赵冬  冯霄  王东亮 《化工进展》2015,(4):990-996
煤制天然气过程具有设备流程简单、技术成熟可靠、单位热值投资成本低等优点。本文运用Aspen Plus软件建立煤制天然气流程的过程模型,并采用?分析法对系统主要单元进行计算分析,得出系统的?分布状况及各单元的?损失量。结果表明,低温甲醇洗单元的?效率最高,为98.22%,煤气化单元的?效率最低,为58.99%。同时,系统的?损失也主要发生在煤气化单元,占系统总?损失的72.69%。煤气化单元中主要的?损失是由于传热不可逆和化学反应的不可逆性引起的内部?损失,通过优化气化温度、汽氧摩尔比等方式改善气化炉的气化条件是提高气化?效率、降低系统?损失的关键。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号