首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Degummed soybean heating oil (SHO) is a renewable energy resource, which can reduce dependence on foreign oil and create a new market for the soybean industry. This study demonstrated that SHO 20 (20% degummed soybean oil and 80% No. 2 fuel oil) is suitable for application in residential furnaces without modification. The tests conducted were: fuel properties, seal compatibility, long-term storage, and laboratory and field combustion. The physical property tests showed that the kinematic viscosity (0.0346 cm2/s) and the pour point of SHO 20 (−30 °C) were within the ASTM requirement for No. 2 fuel oil; and the net heating value of SHO 20 (43.9 MJ/kg) was only 1-3% lower than the No. 2 fuel oil value (45.6 MJ/kg). Compatibility tests performed on the rubber seals and gasket materials (Nitrile and Viton) found in typical heating fuel pump systems indicated that the tensile strength and hardness values were not significantly affected by SHO blends when compared with No. 2 fuel oil. A long-term storage test revealed that there was no significant change in heat content and no visible stratification of SHO 20 blend during three months of storage. The pump pressure and the type of nozzle used affected the concentration of NOx, SO2, and CO in the flue gas. As was expected, increasing the SHO fraction in the blend also reduced the SO2 emission. The combustion of SHO 20 resulted in a higher flue gas temperature which increased the NOx emission than with No. 2 fuel oil.  相似文献   

2.
The polypropylene (PP) was coated on porous α-alumina particles and then pyrolyzed in a flow of helium or a mixture of helium–oxygen at atmospheric pressure. The mass release from PP was dramatically enhanced in the presence of oxygen at temperatures in the range of 200–300°C. The temperature for the 50% mass release was ca. 250°C at an oxygen partial pressure (PO2) of 16.7 kPa and was lowered by 190°C as compared with a system which contained no oxygen. When PO2 was higher than 4.2 kPa, the mass release rate obeyed first-order kinetics with respect toPO2, and the activation energy was calculated and found to be 65–75 kJ/mol. The activation energy was considerably lower than that for pyrolysis in the absence of oxygen (230 kJ/mol) and agreed well with the value for formation of peroxides on tertiary carbons. When the pyrolysis was conducted at 250°C under PO2=16.7 kPa, the carbon-based yield of volatiles exceeded 90%, and the yields of CS2-soluble oil and wax were 76% and 6.0%, respectively. The carbon-based yields of other products were: Acetone, 2.5%; methanol, 1.5%; CO, 3.0%; CO2, 2.2% and solid residue; 10%. Proton NMR (nuclear magnetic resonance) analysis showed that the CS2-soluble oil possessed an elemental composition of C100H187O11. The average number of carbon atoms per molecule of the oil was approximately 10, and –CH2–OH, –C(CH3)CO and CH2 were typical end groups. Their formation is explained by the decomposition of peroxides formed on tertiary carbons.  相似文献   

3.
This study demonstrated that aqueous fraction of pyrolysis oil can be efficiently gasified into fuel gases methane and hydrogen via supercritical water gasification (SCWG) at moderate temperatures (500–700°C) over Ni20%Ru2%/γ‐Al2O3 catalyst. All experiments were performed in a bench‐scale continuous down‐flow tubular reactor packed with the catalyst. Carbon gasification efficiency of 0.91 mol/mol‐C (converted into CH4 and CO2) was achieved in SCWG of the aqueous fraction of pyrolysis oil (containing 2.98 wt % C) at 700°C in the presence of the catalyst. A similar carbon gasification efficiency (approx. 0.89 mol/mol‐C) was obtained at a lower temperature (600°C) with a diluted feedstock (0.7 wt %C). Scanning Electron Microscopy coupled with Energy Dispersive x‐ray and inductively coupled plasma analysis results confirmed that this catalyst was stable during SCWG of aqueous fraction of pyrolysis oil after 6 h on‐stream. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2786–2793, 2016  相似文献   

4.
The effects of diesel oil-soybean biodiesel blends on a passenger vehicle exhaust pollutant emissions were investigated. Blends of diesel oil and soybean biodiesel with concentrations of 3% (B3), 5% (B5), 10% (B10) and 20% (B20) were used as fuels. Additionally, the effects of anhydrous ethanol as an additive to B20 fuel blend with concentrations of 2% (B20E2) and 5% (B20E5) were also studied. The emissions tests were carried out following the New European Driving Cycle (NEDC). The results showed that increasing biodiesel concentration in the fuel blend increases carbon dioxide (CO2) and oxides of nitrogen (NOX) emissions, while carbon monoxide (CO), hydrocarbons (HC) and particulate matter (PM) emissions are reduced. The addition of anhydrous ethanol to B20 fuel blend proved it can be a strategy to control exhaust NOX and global warming effects through the reduction of CO2 concentration. However, it may require fuel injection modifications, as it increases CO, HC and PM emissions.  相似文献   

5.
Experimental study has been carried out to investigate performance parameters, emissions, cylinder pressure, exhaust gas temperature (Texhaust) and engine wall temperatures (Twall) for direct injection diesel engine. Tests were conducted for sunflower oil (S100) and 20% jojoba oil + 80% pure diesel fuel (B20) in comparison to pure diesel fuel with different engine speeds. S100 and B20 were selected for the study because of its being widely used in Egypt and in the world. Also, series of tests are conducted at same previous conditions with different percentage of exhaust gas recirculation (EGR) from 0% to 12% of inlet mass of air fresh charge. Results indicate that S100 or B20 gives lower brake thermal efficiency (ηB), brake power (BP), brake mean effective pressure (BMEP), and higher brake specific fuel consumption (BSFC) due to lower heating value compared to pure diesel fuel. S100 or B20 gives lower NOX concentration due to lower gas temperature. S100 or B20 gives higher Twall and Texhaust due to incomplete combustion inside engine cylinder. S100 or B20 gives higher CO and CO2 concentrations due to higher carbon/hydrogen ratio. The position of maximum pressure (Pmax) change for pure diesel fuel is earlier than for S100 or B20. The results show that S100 or B20 are promising as alternative fuel for diesel engine. The utilization of vegetable oils does not require a significant modification of existing engines. This can be seen as the main advantage of vegetable oils. The main disadvantages of biodiesel fuels are high viscosity, drying with time, thickening in cold conditions, flow and atomization characteristics.  相似文献   

6.
S. Bajpai 《Fuel》2009,88(4):705-711
Karanja (Pongamia pinnata) oil, a non-edible high viscosity (27.84 cSt at 40 °C) straight vegetable oil, was blended with conventional diesel in various proportions to evaluate the performance and emission characteristics of a single cylinder direct injection constant speed diesel engine. Diesel and karanja oil fuel blends (5%, 10%, 15%, and 20%) were used to conduct short-term engine performance and emission tests at varying loads (0%, 20%, 40%, 60%, 80%, and 100%). Tests were carried out over the entire range of engine operation and engine performance parameters such as fuel consumption, thermal efficiency, exhaust gas temperature, and exhaust emissions (smoke, CO, CO2, HC, NOx, and O2) were recorded. The brake specific energy consumption (BSEC), brake thermal efficiency (BTE), and exhaust emissions were evaluated to determine the optimum fuel blend. Higher BSEC was observed at full load for neat petro-diesel. A fuel blend of 10% karanja oil (KVO10) showed higher BTE at a 60% load. Similarly, the overall emission characteristics were found to be best for the case of KVO10 over the entire range of engine operation.  相似文献   

7.
Oleander oil has been used as raw material for producing biodiesel using ultrasonic irradiation method at the frequency of 20 kHz and horn type reactor 50 watt. A two-step transesterification process was carried out for optimum condition of 0.45 v/v methanol to oil ratio, 1.2% v/v H2SO4 catalyst, 45 °C reaction temperature and 15min reaction time, followed by treatment with 0.25 v/v methanol to oil ratio, 0.75% w/v KOH alkaline catalyst, 50 °C reaction temperature and 15 min reaction time. The fuel properties of Oleander biodiesel so obtained confirmed the requirements of both the standards ASTM D6751 and EN 14214 for biodiesel. Further Oleander biodiesel-diesel blends were tested to evaluate the engine performance and emission characteristics. The performance and emission of 20% Oleander biodiesel blend (B20) gave a satisfactory result in diesel engines as the brake thermal efficiency increased 2.06% and CO and UHC emissions decreased 41.4% and 32.3% respectively, compared to mineral diesel. Comparative investigation of performance and emissions characteristics of Oleander biodiesel blends and mineral diesel showed that oleander seed is a potential source of biodiesel and blends up to 20% can be used for realizing better performance from an unmodified diesel engine.  相似文献   

8.
The structural correlation between coal and its liquefaction products has been examined using cross-polarization, magic angle spinning (CP/MAS) 13C n.m.r. and field ionization mass spectrometry (f.i.m.s.). The CH2/aromatic carbon ratios of all solid products (asphaltene, preasphaltene and residue) were close to the corrected +CH2/aromatic carbon ratio for the coal. This suggests that the ring structure of the structural unit of each solid product is essentially similar to that of the parent coal, except for a difference in the degree of polymerization of the structural units. The CH2/aromatic carbon ratios of aromatic ring-type oil fractions also correlated with the corrected ratio for the coal, although they were larger. The z series distribution obtained from the f.i.m.s. of oil fractions revealed that coal with a higher CH2/aromatic carbon ratio produced an oil rich in naphthenic structures.  相似文献   

9.
P.K. Sahoo  M.K.G. Babu  S.N. Naik 《Fuel》2007,86(3):448-454
Non-edible filtered high viscous (72 cSt at 40 °C) and high acid value (44 mg KOH/gm) polanga (Calophyllum inophyllum L.) oil based mono esters (biodiesel) produced by triple stage transesterification process and blended with high speed diesel (HSD) were tested for their use as a substitute fuel of diesel in a single cylinder diesel engine. HSD and polanga oil methyl ester (POME) fuel blends (20%, 40%, 60%, 80%, and 100%) were used for conducting the short-term engine performance tests at varying loads (0%, 20%, 40%, 60%, 80%, and 100%). Tests were carried out over entire range of engine operation at varying conditions of speed and load. The brake specific fuel consumption (BSFC) and brake thermal efficiency (BTE) were calculated from the recorded data. The engine performance parameters such as fuel consumption, thermal efficiency, exhaust gas temperature and exhaust emissions (CO, CO2, HC, NOx, and O2) were recorded. The optimum engine operating condition based on lower brake specific fuel consumption and higher brake thermal efficiency was observed at 100% load for neat biodiesel. From emission point of view the neat POME was found to be the best fuel as it showed lesser exhaust emission as compared to HSD.  相似文献   

10.
Ni1?xFex bimetallic-based cermet anodes were investigated for hydrocarbon-fueled solid oxide fuel cells. Ni1?xFex–Ce0.8Gd0.2O1.9 cermet anodes were synthesized using a glycine nitrate process, and their electrical conductivity and the amount of carbon deposits were found to decrease with increasing Fe content. The anode polarization resistance for the CH4 fuel was significantly reduced by Fe alloying, which was strongly related to the carbon deposition behavior. The maximum power density of the single cell with Ni0.85Fe0.15–Ce0.8Gd0.2O1.9 in CH4 at 800 °C was 0.27 W/cm2. Fe alloying significantly improved the electrochemical performance of solid oxide fuel cells in CH4 fuel by suppressing carbon deposition.  相似文献   

11.
The equilibrium relationships in the extraction process that was developed in our research laboratory for the treatment of canola were studied. In the process, hexane is used as well as CH3OH that contains 5% (vol/vol) H2O and 0.08% (w/w) NaOH to simultaneously produce improved meal and high-quality oil. Equilibrium data for canola oil in the hexane-CH3OH/H2o/NaOH, meal-hexane, and meal-CH3OH/H2O/NaOH-hexane systems are reported. A high partition coefficient for oil between hexane and the polar phase provided a large driving force for mass transfer. The presence of the CH3OH phase improved oil extraction, probably by rupturing the cell structure. The process proved to be a somewhat less desirable replacement for CH3OH/H2O/NH3 extraction and recovered 93.5% of the oil and 91.8% of the protein in the seed, while with CH3OH/H2O/NH3, the oil and protein recoveries were 96.8 and 94.0%, respectively. The NaOH treatment removed only 50.2% of the glucosinolates, and some of the oil was hydrolyzed by the NaOH, making the process less effective, despite its simplicity.  相似文献   

12.
Non-edible jatropha (Jatropha curcas), karanja (Pongamia pinnata) and polanga (Calophyllum inophyllum) oil based methyl esters were produced and blended with conventional diesel having sulphur content less than 10 mg/kg. Ten fuel blends (Diesel, B20, B50 and B100) were tested for their use as substitute fuel for a water-cooled three cylinder tractor engine. Test data were generated under full/part throttle position for different engine speeds (1200, 1800 and 2200 rev/min). Change in exhaust emissions (Smoke, CO, HC, NOx, and PM) were also analyzed for determining the optimum test fuel at various operating conditions. The maximum increase in power is observed for 50% jatropha biodiesel and diesel blend at rated speed. Brake specific fuel consumptions for all the biodiesel blends with diesel increases with blends and decreases with speed. There is a reduction in smoke for all the biodiesel and their blends when compared with diesel. Smoke emission reduces with blends and speeds during full throttle performance test.  相似文献   

13.
The Si/B/C/N/H polymer T2(1), [B(C2H4Si(CH3)NH)3]n, was reacted with different amounts of H3Al·NMe3 to produce three organometallic precursors for Si/B/C/N/Al ceramics. These precursors were transformed into ceramic materials by thermolysis at 1400 °C. The ceramic yield varied from 63% for the Al-poor polymer (3.6 wt.% Al) to 71% for the Al-rich precursor (9.2 wt.% Al). The as-thermolysed ceramics contained nano-sized SiC crystals. Heat treatment at 1800 °C led to the formation of a microstructure composed of crystalline SiC, Si3N4, AlN(+SiC) and a BNCx phase. At 2000 °C, nitrogen-containing phases (partly) decomposed in a nitrogen or argon atmosphere. The high temperature stability was not clearly related to the aluminium concentration within the samples. The oxidation behaviour was analysed at 1100, 1300, and 1500 °C. The addition of aluminium significantly improved the oxide scale quality with respect to adhesion, cracking and bubble formation compared to Al-free Si(/B)/C/N ceramics. Scale growth rates on Si/B/C/N/Al ceramics at 1500 °C were comparable with CVD–SiC and CVD–Si3N4, which makes these materials promising candidates for high-temperature applications in oxidizing environments.  相似文献   

14.
Waste anchovy fish oils transesterification was studied with the purpose of achieving the conditions for biodiesel usage in a single cylinder, direct injection compression ignition. With this purpose, the pure biodiesel produced from anchovy fish oil, biodiesel-diesel fuel blends of 25%:75% biodiesel-diesel (B25), 50%:50% biodiesel-diesel (B50), 75%:25% biodiesel-diesel (B75) and petroleum diesel fuels were used in the engine to specify how the engine performance and exhaust emission parameters changed. The fuel properties of test fuels were analyzed. Tests were performed at full load engine operation with variable speeds of 1000, 1500, 2000 and 2500 rpm engine speeds. As results of investigations on comparison of fuels with each other, there has been a decrease with 4.14% in fish oil methyl ester (FOME) and its blends' engine torque, averagely 5.16% reduction in engine power, while 4.96% increase in specific fuel consumption have been observed. On one hand there has been average reduction as 4.576%, 21.3%, 33.42% in CO2, CO, HC, respectively; on the other hand, there has been increase as 9.63%, 29.37% and 7.54% in O2, NOx and exhaust gas temperature has been observed. It was also found that biodiesel from anchovy fish oil contains 37.93 wt.% saturated fatty acids which helps to improve cetane number and lower NOx emissions. Besides, for biodiesel and its blends, average smoke opacity was reduces about 16% in comparison to D2. It can be concluded that waste anchovy fish obtained from biodiesel can be used as a substitute for petroleum diesel in diesel engines.  相似文献   

15.
This paper reports on the composition and flow rate of outlet gas and current density during the reforming of CH4 with CO2 using three different electrochemical cells: cell A, with Ni−GDC (Gd-doped ceria: Ce0.8Gd0.2O1.9) cathode/porous GDC electrolyte/Cu−GDC anode, cell B, with Cu−GDC cathode/ porous GDC electrolyte/Cu−GDC anode and cell C, with Ru−GDC cathode/ porous GDC electrolyte/ Cu−GDC anode. In the cathode, CO2 reacts with supplied electrons to form CO fuel and O2− ions (CO2+2e→CO+O2−). Too low affinity of Cu cathode to CO2 in cell B reduced the reactivity of the CO2 with electrons. The CO fuel, O2− ions and CH4 gas were transported to the anode through the porous GDC mixed conductor of O2− ions and electrons. In the anode, CH4 reacts with O2− ions to produce CO and H2 fuels (CH4+O2−→2 H2+CO+2e). The reforming efficiency at 700−800 °C was lowest in cell B and highest in cell A. The Cu anode in cells A and C worked well to oxidize CH4 with O2− ions (2Cu+O2−→Cu2O+2e, Cu2O+CH4→2Cu+CO+2H2). However, a blockage of the outlet gas occurred in all the cells at 700−800 °C. The gas flow is inhibited due to a reduction in pore size in the cermet cathode, as well as sintering and grain growth of Cu metal in the anode during the reforming.  相似文献   

16.
Regimes of continuous detonation of methane/hydrogen–air mixtures in spin and opposing transverse detonation waves are obtained for the first time in a flow-type annular cylindrical combustor 503 mm in diameter. A two-component (methane/hydrogen) fuel with the H2 mass fractions of 1/9 to 1/2 in the range of specific flow rates of the mixture from 64 to 1310 kg/(s ·m2) and the fuel-to-air equivalence ratio ? = 0.78–1.56 is considered. In methane/hydrogen–air mixtures with two compositions of the fuel (CH4 + 8H2 and CH4 + 4H2), one-wave and two-wave regimes of continuous spin detonation are obtained; the frequency of rotation of transverse detonation waves is 0.56–1.66 kHz at ? = 0.78–1.02. For the fuel compositions CH4 + 2H2 and CH4 + 1.5H2, continuous multifront detonation with two opposing transverse detonation waves rotating with the frequency of 0.86–1.34 kHz at ? = 1.0–1.23 is obtained. For the CH4 + H2 + air mixture, both combustion in the chamber and continuous spin detonation outside the combustor with transverse detonation waves rotating with the frequency of 1.01–1.1 kHz are observed. The lean limits of continuous detonation are obtained in terms of the specific flow rate of the mixture: 64, 100, 200, and 790 kg/(s · m2) for the fuel compositions CH4 + 8H2, CH4 + 4H2, CH4 + 2H2, and CH4 + 1.5H2, respectively, for the mass fraction of hydrogen in the methane/hydrogen fuel of ≈0.16. Violation of regularity of the continuous detonation wave structure and the wave velocity with a decrease in the fraction of hydrogen in the two-component fuel is detected.  相似文献   

17.
The development of stable polymer electrolytes having good proton conductivity, low cost and operating at medium temperatures represent a crucial step in the evolution of polymer electrolyte fuel cells. We describe two new siloxanic proton-conducting membranes that were synthesized through a two-stage protocol. In the first stage, a poly(methyl hydrosiloxane) precursor (P) bearing siloxane side chains with sulfonic acid groups was prepared. In the second step, the hydrolysis of pristine precursor or its derivative obtained by grafting siloxane chains on P yielded two types of membranes with the formulas {Si(CH3)3O[Si(CH3)HO]21.26[Si(CH3)((CH2)3SO3H)O]1.8[Si(CH3)((CH2)3Si(CH3)2O)O]14Si(CH3)3}n (A) and {Si(CH3)3O[Si(CH3)HO]21.26[Si(CH3)((CH2)3SO3H)O]1.8[Si(CH3)((CH2)3(Si(CH3)2O)w)O]v[Si(CH3)((CH2)3Si(CH3)2O-)O]14 − vSi(CH3)3}n (B), with w = 20.31. Polymer membranes of A and B were prepared by means of a hot-pressing process at 80 °C and 10 t/cm2. Scanning electron microscopy showed that A and B are rubbery materials with rough and transparent surfaces. Thermogravimetric investigations performed under air atmosphere disclosed that A and B are thermally stable up to at least 198 °C. DSC measurements yielded Tg(s) of −44 and −60 °C for A and B, respectively. The polymers exhibit ionic exchange capacities of 0.33 (A) and 0.15 meq/g (B). FT-IR and FT-Raman investigations revealed that the polymers consist of reticulated siloxane networks with pendant silicone chains having sulfonic acid groups.  相似文献   

18.
Safflower seed oil was chemically treated by the transesterification reaction in methyl alcohol environment with sodium hydroxide (NaOH) to produce biodiesel. The produced biodiesel was blended with diesel fuel by 5% (B5), 20% (B20) and 50% (B50) volumetrically. Some of important physical and chemical fuel properties of blend fuels, pure biodiesel and diesel fuel were determined. Performance and emission tests were carried out on a single cylinder diesel engine to compare biodiesel blends with petroleum diesel fuel. Average performance reductions were found as 2.2%, 6.3% and 11.2% for B5, B20 and B50 fuels, respectively, in comparison to diesel fuel. These reductions are low and can be compensated by a slight increase in brake specific fuel consumption (Bsfc). For blends, Bsfcs were increased by 2.8%, 3.9% and 7.8% as average for B5, B20 and B50, respectively. Considerable reductions were recorded in PM and smoke emissions with the use of biodiesel. CO emissions also decreased for biodiesel blends while NOx and HC emissions increased. But the increases in HC emissions can be neglected as they have very low amounts for all test fuels. It can be concluded that the use of safflower oil biodiesel has beneficial effects both in terms of emission reductions and alternative petroleum diesel fuel.  相似文献   

19.
A new mixed Schiff base N,N′-ethylenemono(3-carboxysalicylideneimine)mono(salicylideneimine) has been synthesized by the condensation of equimolar quantities of ethylenediamine, salicylaldehyde and 3-formylsalicylic acid. A polymer supported Schiff base (PS–CH2–LH2) has been synthesized by the reaction of chloromethylated polystyrene (containing 3.9 mmol of chlorine per g of resin and 2% cross-linked with divinylbenzene) and the Schiff base N,N′-ethylenemono(3-carboxysalicylideneimine)mono(salicylideneimine). The polymer-anchored Schiff base reacts with metal salt/metal complex and forms polymer-anchored complexes having the formulae PS–CH2–LCu, PS–CH2–LNi, PS–CH2–LCo, PS–CH2–LFeCl·DMF, PS–CH2–LZn, PS–CH2–LCd, PS–CH2–LMoO2 and PS–CH2–LUO2. The polymer-anchored complexes have been characterized on the basis of elemental analysis, infrared and electronic spectra and magnetic susceptibility measurements. The shifts of the ν(CN) (azomethine) stretch to lower energy and ν(CO) (carboxylic) to higher energy in the polymer-anchored complexes indicate the ONNO donor behaviour of the chelating resin. The metal ions in the metal bound polymers can be leached by hot dilute formic acid, acetic acid or hydrochloric acid. The coordinated dimethylformamide is completely lost on heating the complexes in air. The complexes PS–CH2–LCu and PS–CH2–LCo are paramagnetic with square planar structure, PS–CH2–LNi is diamagnetic with square planar structure and PS–CH2–LFeCl·DMF is paramagnetic and octahedral, PS–CH2–LZn and PS–CH2–LCd are diamagnetic and tetrahedral, PS–CH2–LMoO2 and PS–CH2–LUO2 are diamagnetic and have octahedral structure. The stoichiometry and the structure of the metal bound polymers are comparable with those of metal complexes of N,N′-ethylenebis(salicylideneimine). This is the first report of the syntheses of a mixed Schiff base and its coordination complexes.  相似文献   

20.
Selective oxidation of alcohols using N-benzylidene-N,N-dimethylthane-1,2-diamine, CuBr2 and TEMPO as the catalytic system was developed. Catalyzed by this simple catalytic system in the absence of any external base, various benzylic alcohols could be oxidized to their corresponding aldehydes with excellent yields in CH3CN/H2O (v/v = 1/1) under 0.2 MPa O2 at 80 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号