首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Precise control over the assembly of anisotropic plasmonic gold nanostructures with relative spatial directionality and sequence asymmetry remains a major challenge and offers great fundamental insight and optical application possibilities. Here, a novel strategy is developed to anisotropically functionalize gold nanorods (AuNRs) by using a DNA‐origami‐based precise machine to transfer essential DNA sequence configurations to the surface of the AuNRs through an intentionally designed toehold‐initiated displacement reaction. Different AuNR products are examined via hybridization with DNA‐AuNPs that display distinct elements of regiospecificity. These assembled anisotropic plasmonic gold nanostructures based on the DNA‐origami precise machine inherit the encoded information from the parent platform with high fidelity and show fixed orientation and bonding anisotropy, thereby generating discrete plasmonic nanostructures with enhanced Raman resonance.  相似文献   

2.
Gold nanoparticles (AuNPs) endowed with anisotropic DNA valency are an important class of materials, as they can assemble into complex structures with a minimal number of DNA strands. However, methods to encode 3D DNA strand patterns on AuNPs with a controlled number of unique DNA strands in a predesigned spatial arrangement remain elusive. In this work, a simple one‐step method to yield such DNA‐decorated AuNPs is demonstrated, through encapsulating AuNPs into DNA minimal nanocages. The AuNP@DNA cage encapsulation complex inherits the 3D anisotropic molecular information from the DNA nanocage with enhanced structural stability. The DNA nanocage can be further functionalized and used as a building block for the self‐assembly of complex architectures, such as dimers and trimers, programmed assemblies with sequential growth DNA backbones and DNA origami.  相似文献   

3.
Self‐assembly of gold nanoparticles demonstrates a promising approach to realize enhanced photoacoustic imaging (PAI) and photothermal therapy (PTT) for accurate diagnosis and efficient cancer therapy. Herein, unique photothermal assemblies with tunable patterns of gold nanoparticles (including arcs, rings, ribbons, and vesicles) on poly(lactic‐co‐glycolic acid) (PLGA) spheres are constructed taking advantage of emulsion‐confined and polymer‐directed self‐assembly strategies. The influencing factors and formation mechanism to produce the assemblies are investigated in details. Both the emulsion structure and migration behaviors of amphiphilic block copolymer tethered gold nanoparticles are found to contribute to the formation of versatile photothermal assemblies. Hyaluronic acid‐modified R‐PLGA‐Au (RPA) exhibits outstanding photothermal performances under NIR laser irradiation, which is induced by strong plasmonic coupling between adjacent gold nanoparticles. It is interesting that secondary assembly of RPA can be triggered by NIR laser irradiation. Prolonged residence time in tumors is achieved after RPA assemblies are fused into superstructures with larger sizes, realizing real‐time monitoring of the therapeutic processes via PAI with enhanced photoacoustic signals. Notably, synergistic effect resulting from PTT‐enhanced chemotherapy is realized to demonstrate high antitumor performance. This work provides a facile strategy to construct flexible photothermal assemblies with favorable properties for imaging‐guided synergistic therapy.  相似文献   

4.
A new class of solvent free, lyotropic liquid crystal nanocomposites based on gold nanorods (AuNRs) with high nanorod content is reported. Application of shear results in switchable, highly ordered alignment of the nanorods over several centimeters with excellent storage stability for months. For the synthesis, AuNRs are surface functionalized with a charged, covalently tethered corona, which induces fluid‐like properties. This honey‐like material can be deposited on a substrate and a high orientational order parameter of 0.72 is achieved using a simple shearing protocol. Switching shearing direction results in realignment of the AuNRs. For a film containing 75 wt% of AuNRs the alignment persists for several months. In addition to the lyotropic liquid crystal characteristics, the AuNRs films also exhibit anisotropic electrical conductivity with an order of magnitude difference between the conductivities in direction parallel and perpendicular to the alignment of the AuNRs.  相似文献   

5.
Noble metal nanoparticles have attracted much interest in the heterogeneous catalysis. Particularly, efficient manipulation of the responsive catalytic properties of the metal nanoparticles is an interesting topic. In this work, a simple and efficient strategy is developed to regulate the pH‐responsive catalytic activities of glucose oxidase (GOx)‐mimicking gold nanoparticles (AuNPs). Four DNA strands (regulating strands) that differ slightly in sequences are used to interact non‐covalently with citrate‐capped AuNPs, resulting in markedly distinct pH‐dependent catalytic behavior of AuNPs. This is ascribed to the characteristic pH‐induced conformational change of the DNA strands that leads to the different adsorption capability to the NPs surface, as demonstrated by pH‐CD profiles of the respective DNA molecules. The pH‐dependent catalysis of AuNPs is also encoded with structural information of the double‐stranded DNA (including regulating strands and their complementary strands) that has conformation resistant or responsive to pH change. As a result, the catalysis can be programmed into an AND gate, a XNOR gate or a NOT gate, using pH and complementary strand as the inputs, the nanoparticle activity as the output and the regulating strands as the programs. This work can be expanded by engineering the catalytic behavior of noble metal nanoparticles to respond smartly to a variety of environmental stimuli, such as metal ions or light wavelengths. These results may provide insight into understanding ligand‐regulated nanometallic catalysis.  相似文献   

6.
As one of the most toxic heavy metal elements, mercury ion (Hg2+) and its methylated product, methylmercury (MeHg) can pose a threat to human health and the environment. Herein, a novel Raman biosensor with cascade sensitivity is developed for Hg2+ detection through Au@gap@AuAg nanorod side‐by‐side assemblies. Due to the strong electromagnetic coupling from the assemblies and core–shell structure, the Raman sensor possesses high sensitivity with the limit of detection (LOD) of 0.001 ng mL‐1, which is about one order lower than traditional atomic fluorescence spectrometer (AFS) methods. Moreover, the fabricated biosensor is used to measure residual mercury levels in tissues and eggs of hens fed high‐mercury diets, and the results show total mercury in collected egg yolks is 20 times higher than whites. Furthermore, the form of mercury in the eggs is also analyzed by high‐performance liquid chromatography coupled with AFS, and, unexpectedly, the methylated product MeHg tends to only be found in egg whites. These interesting differences may indicate a new research direction for the toxicity of mercury in living organisms, and the developed ultrasensitive Surface Enhanced Raman Scattering (SERS) method could pave a broad way for the application of biosensors in Hg detection.  相似文献   

7.
Tumors are 3D, composed of cellular agglomerations and blood vessels. Therapies involving nanoparticles utilize specific accumulations due to the leaky vascular structures. However, systemically injected nanoparticles are mostly uptaken by cells located on the surfaces of cancer tissues, lacking deep penetration into the core cancer regions. Herein, an unprecedented strategy, described as injecting “nanoparticle‐loaded nanoparticles” to address the long‐lasting problem is reported for effective surface‐to‐core drug delivery in entire 3D tumors. The “nanoparticle‐loaded nanoparticle” is a silica nanoparticle (≈150 nm) with well‐developed, interconnected channels (diameter of ≈30 nm), in which small gold nanoparticles (AuNPs) (≈15 nm) with programmable DNA are located. The nanoparticle (AuNPs)‐loaded nanoparticles (silica): (1) can accumulate in tumors through leaky vascular structures by protecting the inner therapeutic AuNPs during blood circulation, and then (2) allow diffusion of the AuNPs for penetration into the entire surface‐to‐core tumor tissues, and finally (3) release a drug triggered by cancer‐characteristic pH gradients. The hierarchical “nanoparticle‐loaded nanoparticle” can be a rational design for cancer therapies because the outer large nanoparticles are effective in blood circulation and in protection of the therapeutic nanoparticles inside, allowing the loaded small nanoparticles to penetrate deeply into 3D tumors with anticancer drugs.  相似文献   

8.
Self‐assembled structures of metallic nanoparticles with dynamically changeable interparticle distance hold promise for the regulation of collective physical properties. This paper describes gold nanoparticle dimers and trimers that exhibit spontaneous and reversible changes in interparticle distance. To exploit this property, a gold nanoparticle is modified with precisely one long DNA strand and approximately five short DNA strands. The long DNA serves to align the nanoparticles on a template DNA via hybridization, while the short DNAs function to induce the interparticle distance changes. The obtained dimer and trimer are characterized with gel electrophoresis, dynamic light scattering measurements, and transmission electron microscopy (TEM). When the complementary short DNA is added to form the fully matched duplexes on the particle surface in the presence of MgCl2, spontaneous reduction of the interparticle distance is observed with TEM and cryo‐electron microscopy. By contrast, when the terminal‐mismatched DNA is added, no structural change occurs under the same conditions. Therefore, the single base pairing/unpairing at the outermost surface of the nanoparticle impacts the interparticle distance. This unique feature could be applied to the regulation of structures and properties of various DNA‐functionalized nanoparticle assemblies.  相似文献   

9.
The assembly of plasmonic metal nanoparticles into hot spot surface‐enhanced Raman scattering (SERS) nanocluster probes is a powerful, yet challenging approach for ultrasensitive biosensing. Scaffolding strategies based on self‐complementary peptides and proteins are of increasing interest for these assemblies, but the electronic and the photonic properties of such hybrid nanoclusters remain difficult to predict and optimize. Here, split‐green fluorescence protein (sGFP) fragments are used as molecular glue and the GFP chromophore is used as a Raman reporter to assemble a variety of gold nanoparticle (AuNP) clusters and explore their plasmonic properties by numerical modeling. It is shown that GFP seeding of plasmonic nanogaps in AuNP/GFP hybrid nanoclusters increases near‐field dipolar couplings between AuNPs and provides SERS enhancement factors above 108. Among the different nanoclusters studied, AuNP/GFP chains allow near‐infrared SERS detection of the GFP chromophore imidazolinone/exocyclic C?C vibrational mode with theoretical enhancement factors of 108–109. For larger AuNP/GFP assemblies, the presence of non‐GFP seeded nanogaps between tightly packed nanoparticles reduces near‐field enhancements at Raman active hot spots, indicating that excessive clustering can decrease SERS amplifications. This study provides rationales to optimize the controlled assembly of hot spot SERS nanoprobes for remote biosensing using Raman reporters that act as molecular glue between plasmonic nanoparticles.  相似文献   

10.
Robust synthesis of large‐scale self‐assembled nanostructures with long‐range organization and a prominent response to external stimuli is critical to their application in functional plasmonics. Here, the first example of a material made of liquid crystalline nanoparticles which exhibits UV‐light responsive surface plasmon resonance in a condensed state is presented. To obtain the material, metal cores are grafted with two types of organic ligands. A promesogenic derivative softens the system and induces rich liquid crystal phase polymorphism. Second, an azobenzene derivative endows nanoparticles with photoresponsive properties. It is shown that nanoparticles covered with a mixture of these ligands assemble into long‐range ordered structures which exhibit a novel dual‐responsivity. The structure and plasmonic properties of the assemblies can be controlled by a change in temperature as well as by UV‐light irradiation. These results present an efficient way to obtain bulk quantities of self‐assembled nanostructured materials with stability that is unattainable by alternative methods such as matrix‐assisted or DNA‐mediated organization.  相似文献   

11.
Controlled drug release systems can enhance the safety and availability but avoid the side effect of drugs. Herein, the concept of DNA complementary base pairing rules in biology is used to design and prepare a photothermal‐triggered drug release system. Adenine (A) modified polydopamine nanoparticles (A‐PDA, photothermal reagent) can effectively bind with thymine (T) modified Zinc phthalocyanine (T‐ZnPc, photosensitizer) forming A‐PDA = T‐ZnPc (PATP) complex based on A = T complementary base pairing rules. Similar to DNA, whose base pairing in double strands will break by heating, T‐ZnPc can be effectively released from A‐PDA after near infrared irradiation–triggered light‐thermal conversion to obtain satisfactory photodynamic–photothermal synergistic tumor treatment. In addition, PDA can carry abundant Gd3+ to provide magnetic resonance imaging guided delivery and theranostic function.  相似文献   

12.
Muscles and joints make highly coordinated motion, which can be partly mimicked to drive robots or facilitate activities. However, most cases primarily employ actuators enabling simple deformations. Therefore, a mature artificial motor system requires many actuators assembled with jointed structures to accomplish complex motions, posing limitations and challenges to the fabrication, integration, and applicability of the system. Here, a holistic artificial muscle with integrated light‐addressable nodes, using one‐step laser printing from a bilayer structure of poly(methyl methacrylate) and graphene oxide compounded with gold nanorods (AuNRs), is reported. Utilizing the synergistic effect of the AuNRs with high plasmonic property and wavelength‐selectivity as well as graphene with good flexibility and thermal conductivity, the artificial muscle can implement full‐function motility without further integration, which is reconfigurable through wavelength‐sensitive light activation. A biomimetic robot and artificial hand are demonstrated, showcasing functionalized control, which is desirable for various applications, from soft robotics to human assists.  相似文献   

13.
A novel enzyme‐induced metallization colorimetric assay is developed to monitor and measure beta‐galactosidase (β‐gal) activity, and is further employed for colorimetric bacteriophage (phage)‐enabled detection of Escherichia coli (E. coli). This assay relies on enzymatic reaction‐induced silver deposition on the surface of gold nanorods (AuNRs). In the presence of β‐gal, the substrate p‐aminophenyl β‐d ‐galactopyranoside is hydrolyzed to produce p‐aminophenol (PAP). Reduction of silver ions by PAP generates a silver shell on the surface of AuNRs, resulting in the blue shift of the longitudinal localized surface plasmon resonance peak and multicolor changes of the detection solution from light green to orange‐red. Under optimized conditions, the detection limit for β‐gal is 128 pM, which is lower than the conventional colorimetric assay. Additionally, the assay has a broader dynamic range for β‐gal detection. The specificity of this assay for the detection of β‐gal is demonstrated against several protein competitors. Additionally, this technique is successfully applied to detect E. coli bacteria cells in combination with bacteriophage infection. Due to the simplicity and short incubation time of this enzyme‐induced metallization colorimetric method, the assay is well suited for the detection of bacteria in low‐resource settings.  相似文献   

14.
Nanoparticles tend to aggregate once integrated into soft matter and consequently, self‐assembling nanoparticles into large‐scale, regular, well‐defined, and ultimately chiral patterns remains an ongoing challenge toward the design and realization of organized superstructures of nanoparticles. The patterns of nanoparticles that are reported in liquid crystals so far are all static, and this lack of responsiveness extends to assemblies of nanoparticles formed in topological singularities and other localized structures of anisotropic matter. Here, it is shown that gold nanoparticles form spiral superstructures in polygonal fields of cholesteric liquid crystals. Moreover, when the cholesteric liquid crystals incorporate molecular photoswitches in their composition, the pitch of the nanoparticulate spirals follows the light‐induced reorganization of the cholesteric liquid crystals. These experimental findings indicate that chiral liquid crystals can be used as chiral and dynamic templates for soft photonic nanomaterials. Controlling the geometry of these spirals of nanoparticles will ultimately allow modulating the plasmonic signature of hybrid and chiral systems.  相似文献   

15.
Two‐ and three‐dimensional assembly of nanoparticles has generated significant interest because these higher order structures could exhibit collective behaviors/properties beyond those of the individual nanoparticles. Highly specific interactions between molecules, which biology exploits to regulate molecular assemblies such as DNA hybridization, often provide inspiration for the construction of higher order materials using bottom‐up approaches. In this study, higher order assembly of virus‐like particles (VLPs) derived from the bacteriophage P22 is demonstrated by using a small adaptor protein, Dec, which binds to symmetry specific sites on the P22 capsid. Two types of connector proteins, which have different number of P22 binding sites and different geometries (ditopic linker with liner geometry and tetratopic linker with tetrahedral geometry) have been engineered through either a point mutation of Dec or genetic fusion with another protein, respectively. Bulk assembly and layer‐by‐layer deposition of P22 VLPs from solution was successfully achieved using both of the engineered multi‐topic linker molecules, while Dec with only a single binding site does not mediate P22 assembly. Beyond the two types of linkers developed in this study, a wide range of different connector geometries could be envisioned using a similar engineering approach. This is a powerful strategy to construct higher order assemblies of VLP based nanomaterials.  相似文献   

16.
This work describes the properties of gold nanoparticles (AuNPs) thin film on silicon (Si) substrates. The AuNPs can be divided into two major shapes: gold nanospheres (AuNSs) and gold nanorods (AuNRs). Two sizes of AuNSs (15 nm and 30 nm) and three aspect ratios of AuNRs (3.12, 3.39 and 3.60) were synthesised using the seeding-growth method. The AuNPs produced were deposited on Si substrates by using a spin-coating method followed by heat treatment at 200 °C. The number of AuNPs coatings varied as one, three and five coating depositions, respectively. From the field emission scanning electron microscopy, the AuNPs were uniformly distributed on the Si substrate surface. The AuNPs distribution increased with increasing number of AuNPs coating. Various deposited AuNPs with different shapes and sizes were analysed using current–voltage (IV) measurement in light–dark conditions. The results showed that the resistance of samples became lower under light condition as the number of AuNPs coatings increased on the Si substrate due to the large amount of AuNPs particles, which had better properties in absorbing and scattering the light intensity. Among these samples, five-coating depositions of 15 nm AuNSs and 3.12 aspect ratio of AuNRs thin films gave the best sensitivity in light–dark condition. The higher sensitivity implied the better sensing and recovery properties since it can amplify a small signal from the same light source power/intensity.  相似文献   

17.
2D materials possess many interesting properties, and have shown great application potentials. In this work, the development of humidity‐responsive, 2D plasmonic nanostructures with switchable chromogenic properties upon wetting–dewetting transitions is reported. By exploiting DNA hybridization‐directed anchoring of gold nanoparticles (AuNPs) on substrates, a series of single‐nanoparticle‐layer (SNL) plasmonic films is fabricated. Due to the collective plasmonic responses in SNL, these ultrathin 2D films display rapid and reversible red‐blue color change upon the wetting–dewetting transition, suggesting that hydration‐induced microscopic plasmonic coupling between AuNPs is replicated in the macroscopic, centimeter‐scale films. It is also found that hydration finely tunes the electric field distribution between AuNPs in the SNL film, based on which responsive surface‐enhanced Raman scattering substrates with spatially homogeneous hot spots are developed. Thus it is expected that DNA‐mediated 2D SNL structures open new avenues for designing miniaturized plasmonic nanodevices with various applications.  相似文献   

18.
Smart assemblies have attracted increased interest in various areas, especially in developing novel stimuli‐responsive theranostics. Herein, commercially available, natural tannic acid (TA) and iron oxide nanoparticles (Fe3O4 NPs) are utilized as models to construct smart magnetic assemblies based on polyphenol‐inspired NPs–phenolic self‐assembly between NPs and TA. Interestingly, the magnetic assemblies can be specially disassembled by adenosine triphosphate, which shows a stronger affinity to Fe3O4 NPs than that of TA and partly replaces the surface coordinated TA. The disassembly can further be facilitated by the acidic environment hence causing the remarkable change of the transverse relaxivity and potent “turn‐on” of fluorescence (FL) signals. Therefore, the assemblies for specific and sensitive tumor magnetic resonance and FL dual‐modal imaging and photothermal therapy after intravenous injection of the assemblies are successfully employed. This work not only provides understandings on the self‐assembly between NPs and polyphenols, but also will open new insights for facilely constructing versatile assemblies and extending their biomedical applications.  相似文献   

19.
Common methods to prepare SERS (surface‐enhanced Raman scattering) probes rely on random conjugation of Raman dyes onto metal nanostructures, but most of the Raman dyes are not located at Raman‐intense electromagnetic hotspots thus not contributing to SERS enhancement substantially. Herein, a competitive reaction between transverse gold overgrowth and dye conjugation is described to achieve site selective conjugation of Raman dyes to the hotspots (ends) on gold nanorods (GNRs). The preferential overgrowth on the nanorod side surface creates a barrier to prevent the Raman dyes from binding to the side surface except the ends of the GNRs, where the highest SERS enhancement factors are expected. The SERS enhancement observed from this special structure is dozens of times larger than that from conjugates synthesized by conventional methods. This simple and powerful strategy to prepare SERS probes can be extended to different anisotropic metal nanostructures with electromagnetic hotspots and has immense potential in in‐depth SERS‐based biological imaging and single‐molecule detection.  相似文献   

20.
It is demonstrated that bimetallic silver–gold anisotropic nanostructures can be easily assembled from various nanoparticle building blocks with well‐defined geometries by means of electrostatic interactions. One‐dimensional (1D) silver nanowires, two‐dimensional (2D) silver nanoplates, and spherical gold nanoparticles are used as representative building blocks for bottom‐up assembly. The gold nanoparticles are electrostatically bound onto the 1D silver nanowires and the 2D silver nanoplates to give bimetallic nanostructures. The unique feature of the resulting nanostructures is the particle‐to‐particle interaction that subjects absorbed analytes to an enhanced electromagnetic field with strong polarization dependence. The Raman activity of the bimetallic nanostructures is compared with that of the individual nanoparticle blocks by using rhodamine 6G solution as the model analyte. The Raman intensity of the best‐performing silver–gold nanostructure is comparable with the dense array of silver nanowires and silver nanoplates that were prepared by means of the Langmuir–Blodgett technique. An optimized design of a single‐nanostructure substrate for surface‐enhanced Raman spectroscopy (SERS), based on a wet‐assembly technique proposed here, can serve as a compact and low‐cost alternative to fabricated nanoparticle arrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号