首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stimuli‐responsive energy storage devices have emerged for the fast‐growing popularity of intelligent electronics. However, all previously reported stimuli‐responsive energy storage devices have rather low energy densities (<250 Wh kg–1) and single stimuli‐response, which seriously limit their application scopes in intelligent electronics. Herein, a dual‐stimuli‐responsive sodium‐bromine (Na//Br2) battery featuring ultrahigh energy density, electrochromic effect, and fast thermal response is demonstrated. Remarkably, the fabricated Na//Br2 battery exhibits a large operating voltage of 3.3 V and an energy density up to 760 Wh kg?1, which outperforms those for the state‐of‐the‐art stimuli‐responsive electrochemical energy storage devices. This work offers a promising approach for designing multi‐stimuli‐responsive and high‐energy rechargeable batteries without sacrificing the electrochemical performance.  相似文献   

2.
In this work, combining both advantages of potassium‐ion batteries and dual‐ion batteries, a novel potassium‐ion‐based dual‐ion battery (named as K‐DIB) system is developed based on a potassium‐ion electrolyte, using metal foil (Sn, Pb, K, or Na) as anode and expanded graphite as cathode. When using Sn foil as the anode, the K‐DIB presents a high reversible capacity of 66 mAh g?1 at a current density of 50 mA g?1 over the voltage window of 3.0–5.0 V, and exhibits excellent long‐term cycling performance with 93% capacity retention for 300 cycles. Moreover, as the Sn foil simultaneously acts as the anode material and the current collector, dead load and dead volume of the battery can be greatly reduced, thus the energy density of the K‐DIB is further improved. It delivers a high energy density of 155 Wh kg?1 at a power density of 116 W kg?1, which is comparable with commercial lithium‐ion batteries. Thus, with the advantages of environmentally friendly, cost effective, and high energy density, this K‐DIB shows attractive potential for future energy storage application.  相似文献   

3.
Multifunctional batteries with enhanced safety performance have received considerable attention for their applications at extreme conditions. However, few batteries can endure a mix‐up of battery polarity during charging, a common wrong operation of rechargeable batteries. Herein, a polarity‐switchable battery based on the switchable intercalation feature of graphite is demonstrated. The unique redox‐amphoteric intercalation behavior of graphite allows a reversible switching of graphite between anode and cathode, thus enabling polarity‐switchable symmetric graphite batteries. The large potential gap between anion and cation intercalation delivers a high midpoint device voltage (≈average voltage) of ≈4.5 V. Further, both the graphite anode and cathode are kinetically activated during the polarity switching. Consequently, polarity‐switchable symmetric graphite batteries exhibit a remarkable cycling stability (96% capacity retention after 500 cycles), a high power density of 8.66 kW kg?1, and a high energy density of 227 Wh kg?1 (calculated based on the total weight of active materials in both anode and cathode), which are superior to other symmetric batteries and recently reported dual‐graphite or dual‐carbon batteries. This work will inspire the development of new multifunctional energy‐storage devices based on novel materials and electrolyte systems.  相似文献   

4.
To achieve high‐energy and stable aqueous rechargeable batteries, state‐of‐the art of anode materials are needed. Bismuth (Bi) has recently emerged as an attractive anode material due to its highly reversible redox reaction and suitable negative operating working window. However, the capacity and durability of currently reported Bi anodes are still far from satisfactory. Here, an in situ activation strategy is reported to prepare a 3D porous high‐density Bi nanoparticles/carbon architecture (P–Bi–C) as an efficient anode for nickel–bismuth batteries. Taking advantages of the fast channels for charge transfer and ion diffusion, enhanced wettability, and accessible surface area, the highly loaded P–Bi–C electrode delivers a remarkable capacity of 2.11 mA h cm?2 as well as high rate capability (1.19 mA h cm?2 at 120 mA cm?2). To highlight, a robust aqueous rechargeable Ni//Bi battery based on the P–Bi–C anode is first constructed, achieving decent capacity (141 mA h g?1), impressive durability (94% capacity retention after 5000 cycles), and admirable energy density (16.9 mW h cm?3). This work paves the way for designing superfast nickel–bismuth batteries with high energy and long‐life and may inspire new development for aqueous rechargeable batteries.  相似文献   

5.
A novel hybrid Li‐ion capacitor (LIC) with high energy and power densities is constructed by combining an electrochemical double layer capacitor type cathode (graphene hydrogels) with a Li‐ion battery type anode (TiO2 nanobelt arrays). The high power source is provided by the graphene hydrogel cathode, which has a 3D porous network structure and high electrical conductivity, and the counter anode is made of free‐standing TiO2 nanobelt arrays (NBA) grown directly on Ti foil without any ancillary materials. Such a subtle designed hybrid Li‐ion capacitor allows rapid electron and ion transport in the non‐aqueous electrolyte. Within a voltage range of 0.0?3.8 V, a high energy of 82 Wh kg?1 is achieved at a power density of 570 W kg?1. Even at an 8.4 s charge/discharge rate, an energy density as high as 21 Wh kg?1 can be retained. These results demonstrate that the TiO2 NBA//graphene hydrogel LIC exhibits higher energy density than supercapacitors and better power density than Li‐ion batteries, which makes it a promising electrochemical power source.  相似文献   

6.
Rechargeable flexible solid Zn‐air battery, with a high theoretical energy density of 1086 Wh kg?1, is among the most attractive energy technologies for future flexible and wearable electronics; nevertheless, the practical application is greatly hindered by the sluggish oxygen reduction reaction/oxygen evolution reaction (ORR/OER) kinetics on the air electrode. Precious metal‐free functionalized carbon materials are widely demonstrated as the most promising candidates, while it still lacks effective synthetic methodology to controllably synthesize carbocatalysts with targeted active sites. This work demonstrates the direct utilization of the intrinsic structural defects in nanocarbon to generate atomically dispersed Co–Nx–C active sites via defect engineering. As‐fabricated Co/N/O tri‐doped graphene catalysts with highly active sites and hierarchical porous scaffolds exhibit superior ORR/OER bifunctional activities and impressive applications in rechargeable Zn‐air batteries. Specifically, when integrated into a rechargeable and flexible solid Zn‐air battery, a high open‐circuit voltage of 1.44 V, a stable discharge voltage of 1.19 V, and a high energy efficiency of 63% at 1.0 mA cm?2 are achieved even under bending. The defect engineering strategy provides a new concept and effective methodology for the full utilization of nanocarbon materials with various structural features and further development of advanced energy materials.  相似文献   

7.
Zinc–air batteries with high‐density energy are promising energy storage devices for the next generation of energy storage technologies. However, the battery performance is highly dependent on the efficiency of oxygen electrocatalyst in the air electrode. Herein, the N, F, and B ternary doped carbon fibers (TD‐CFs) are prepared and exhibited higher catalytic properties via the efficient 4e transfer mechanism for oxygen reduction in comparison with the single nitrogen doped CFs. More importantly, the primary and rechargeable Zn–air batteries using TD‐CFs as air–cathode catalysts are constructed. When compared to batteries with Pt/C + RuO2 and Vulcan XC‐72 carbon black catalysts, the TD‐CFs catalyzed batteries exhibit remarkable battery reversibility and stability over long charging/discharging cycles.  相似文献   

8.
Spinel LiNi0.5Mn1.5O4 (LNMO) is the most promising cathode material for achieving high energy density lithium‐ion batteries attributed to its high operating voltage (≈4.75 V). However, at such high voltage, the commonly used battery electrolyte is suffered from severe oxidation, forming unstable solid–electrolyte interphase (SEI) layers. This would induce capacity fading, self‐discharge, as well as inferior rate capabilities for the electrode during cycling. This work first time discovers that the electrolyte oxidation is effectively negated by introducing an electrochemically stable silk sericin protein, which is capable to stabilize the SEI layer and suppress the self‐discharge behavior for LNMO. In addition, robust mechanical support of sericin coating maintains the structural integrity during the fast charging/discharging process. Benefited from these merits, the sericin‐based LNMO electrode possesses a much lower Li‐ion diffusion energy barrier (26.1 kJ mol−1) for than that of polyvinylidene fluoride‐based LNMO electrode (37.5 kJ mol−1), delivering a remarkable high‐rate performance. This work heralds a new paradigm for manipulating interfacial chemistry of electrode to solve the key obstacle for LNMO commercialization, opening a powerful avenue for unlocking the current challenges for a wide family of high operating voltage cathode materials (>4.5 V) toward practical applications.  相似文献   

9.
Lithium primary batteries are still widely used in military, aerospace, medical, and civilian applications despite the omnipresence of rechargeable Li‐ion batteries. However, these current primary chemistries are exclusively based on inorganic materials with high cost, low energy density or severe safety concerns. Here, a novel lithium‐organic primary battery chemistry that operates through a synergetic reduction of 9,10‐anthraquinone (AQ) and fluoroethylene carbonate (FEC) is reported. In FEC‐presence, the equilibrium between the carbonyl and enol structures is disabled, and replaced by an irreversible process that corresponds to a large capacity along with methylene and inorganic salts (such as LiF, Li2CO3) generated as products. This irreversible chemistry of AQ yields a high energy density of 1300 Wh/(kg of AQ) at a stable discharge voltage platform of 2.4 V as well as high rate capability (up to 313 mAh g?1 at a current density of 1000 mA g?1), wide temperature range of operation (?40 to 40 °C) and low self‐discharge rate. Combined with the advantages of low toxicity, facile and diverse synthesis methods, and easy accessibility of AQ, Li‐organic primary battery chemistry promises a new battery candidate for applications that requires low cost, high environmental friendliness, and high energy density.  相似文献   

10.
Aqueous rechargeable batteries show great application prospects in large-scale energy storage because of their reliable safety and low cost. However, a key challenge in developing this battery system lies in its low energy density. Herein, a high-energy manganese–metal hydride (Mn–MH) hybrid battery is reported in which a Mn-based cathode operated by the Mn2+/MnO2 deposition–dissolution reactions, a hydrogen-storage alloy anode that absorbs and desorbs hydrogen in an alkaline solution, and a proton-exchange membrane separator are employed. Given the benefit derived from the high solubility and high specific capacity of the Lewis acidic MnCl2 in the cathode and the low electrode potential of the MH anode, this aqueous Mn–MH hybrid battery exhibits impressive electrochemical properties with admirable discharge voltage plateaus up to 2.2 V, a competitive energy density of about 240 Wh kg−1 (based on the total mass of the 5.5 m MnCl2 solution and the hydrogen storage alloy electrode system), good cycling stability over 130 cycles, and a desirable rate capability. This work demonstrates a new strategy for achieving high-performance and low-cost aqueous rechargeable batteries.  相似文献   

11.
Polydopamine, a functional coating material, is redox active as cathode materials for both Li‐ and Na‐ion batteries or hybrid capacitors. Here, a polydopamine coating onto 3D graphene framework is introduced through a simple hydrothermal process, during which graphene oxide serves not only as an oxidant for assisting the polymerization of dopamine, but also as a template for the conformal growth of polydopamine. High‐density films are fabricated by compressing the polydopamine‐coated graphene aerogels, which can be directly used as free‐standing and flexible cathodes in both Li‐ and Na‐cells. The compact electrodes deliver high capacities of ≈230 mAh g−1 in Li‐cells and ≈211 mAh g−1 in Na‐cells based on the total mass of electrodes. These compact electrodes also exhibit exceptional cycling stability and high rate performance due to the unique structure in which polydopamine is uniformly coated on the 3D structured graphene.  相似文献   

12.
Owing to the low‐cost, safety, dendrite‐free formation, and two‐electron redox properties of magnesium (Mg), rechargeable Mg batteries are considered as promising next‐generation secondary batteries with high specific capacity and energy density. However, the clumsy Mg2+ with high polarity inclines to sluggish Mg insertion/deinsertion, leading to inadequate reversible capacity and rate performance. Herein, 2D VOPO4 nanosheets with expanded interlayer spacing (1.42 nm) are prepared and applied in rechargeable magnesium batteries for the first time. The interlayer expansion provides enough diffusion space for fast kinetics of MgCl+ ion flux with low polarization. Benefiting from the structural configuration, the Mg battery exhibits a remarkable reversible capacity of 310 mAh g?1 at 50 mA g?1, excellent rate capability, and good cycling stability (192 mAh g?1 at 100 mA g?1 even after 500 cycles). In addition, density functional theory (DFT) computations are conducted to understand the electrode behavior with decreased MgCl+ migration energy barrier compared with Mg2+. This approach, based on the regulation of interlayer distance to control cation insertion, represents a promising guideline for electrode material design on the development of advanced secondary multivalent‐ion batteries.  相似文献   

13.
Advanced flexible batteries with high energy density and long cycle life are an important research target. Herein, the first paradigm of a high‐performance and stable flexible rechargeable quasi‐solid‐state Zn–MnO2 battery is constructed by engineering MnO2 electrodes and gel electrolyte. Benefiting from a poly(3,4‐ethylenedioxythiophene) (PEDOT) buffer layer and a Mn2+‐based neutral electrolyte, the fabricated Zn–MnO2@PEDOT battery presents a remarkable capacity of 366.6 mA h g?1 and good cycling performance (83.7% after 300 cycles) in aqueous electrolyte. More importantly, when using PVA/ZnCl2/MnSO4 gel as electrolyte, the as‐fabricated quasi‐solid‐state Zn–MnO2@PEDOT battery remains highly rechargeable, maintaining more than 77.7% of its initial capacity and nearly 100% Coulombic efficiency after 300 cycles. Moreover, this flexible quasi‐solid‐state Zn–MnO2 battery achieves an admirable energy density of 504.9 W h kg?1 (33.95 mW h cm?3), together with a peak power density of 8.6 kW kg?1, substantially higher than most recently reported flexible energy‐storage devices. With the merits of impressive energy density and durability, this highly flexible rechargeable Zn–MnO2 battery opens new opportunities for powering portable and wearable electronics.  相似文献   

14.
Room‐temperature sodium‐sulfur (RT/Na‐S) batteries are considered among the most promising next‐generation energy storage and conversion systems because of the earth‐abundant reserves of sodium and sulfur. These batteries also possess the advantages of high theoretical gravimetric capacity, high energy density, and low cost. Herein, highly uniform Fe3+/polyacrylamide nanospheres (FPNs) are fabricated on a large‐scale by a facile, low‐cost approach. Subsequently, mesoporous nitrogen‐doped carbon nanospheres (PNC‐Ns), obtained by carbonizing FPNs, are applied as a sulfur matrix to improve the utilization of sulfur, enhance the overall conductivity of the cathode, and inhibit the shuttling of sodium polysulfides (SPSs). In addition, graphene and FPNs are simultaneously coated onto the side of the separator to form a FPNs‐graphene‐functionalized separator (FPNs‐G/separator); here, the mesoporous FPNs effectively anchor and block the SPSs, while the large specific area graphene sheets eliminate the intrinsic mechanical brittleness of the FPNs and improve the overall conductivity of RT/Na‐S batteries. When S/PNC‐Ns as a cathode and FPNs‐G/separator are assembled into an RT/Na‐S battery, it delivers a high discharge capacity (639 mAh g‐1 at 0.1 C after 400 cycles), stable cycle life (396 mAh g‐1 at 0.5 C after 800 cycles), and good rate performance (228 mAh g‐1 at 2 C).  相似文献   

15.
Rechargeable lithium metal batteries are next generation energy storage devices with high energy density, but face challenges in achieving high energy density, high safety, and long cycle life. Here, lithium metal batteries in a novel nonflammable ionic-liquid (IL) electrolyte composed of 1-ethyl-3-methylimidazolium (EMIm) cations and high-concentration bis(fluorosulfonyl)imide (FSI) anions, with sodium bis(trifluoromethanesulfonyl)imide (NaTFSI) as a key additive are reported. The Na ion participates in the formation of hybrid passivation interphases and contributes to dendrite-free Li deposition and reversible cathode electrochemistry. The electrolyte of low viscosity allows practically useful cathode mass loading up to ≈16 mg cm−2. Li anodes paired with lithium cobalt oxide (LiCoO2) and lithium nickel cobalt manganese oxide (LiNi0.8Co0.1Mn0.1O2, NCM 811) cathodes exhibit 99.6–99.9% Coulombic efficiencies, high discharge voltages up to 4.4 V, high specific capacity and energy density up to ≈199 mAh g−1 and ≈765 Wh kg−1 respectively, with impressive cycling performances over up to 1200 cycles. Highly stable passivation interphases formed on both electrodes in the novel IL electrolyte are the key to highly reversible lithium metal batteries, especially for Li–NMC 811 full batteries.  相似文献   

16.
A potassium ion battery has potential applications for large scale electric energy storage systems due to the abundance and low cost of potassium resources. Dual graphite batteries, with graphite as both anode and cathode, eliminate the use of transition metal compounds and greatly lower the overall cost. Herein, combining the merits of the potassium ion battery and dual graphite battery, a potassium‐based dual ion battery with dual‐graphite electrode is developed. It delivers a reversible capacity of 62 mA h g?1 and medium discharge voltage of ≈3.96 V. The intercalation/deintercalation mechanism of K+ and PF6? into/from graphite is proposed and discussed in detail, with various characterizations to support.  相似文献   

17.
A Cu‐supported, graphene nanoplatelet (GNP) electrodes are reported a as high performance anode in lithium ion battery. The electrode precursor is an easy‐to‐handle aqueous ink cast on cupper foil and following dried in air. The scanning electron microscopy evidences homogeneous, micrometric flakes‐like morphology. Electrochemical tests in conventional electrolyte reveal a capacity of about 450 mAh g−1 over 300 cycles, delivered at a current rate as high as 740 mA g−1. The graphene‐based electrode is characterized using a N‐butyl‐N‐methyl‐pyrrolidiniumbis (trifluoromethanesulfonyl) imide, lithium‐bis(trifluoromethanesulfonyl)imide (Py1,4TFSI–LiTFSI) ionic liquid‐based solution added by ethylene carbonate (EC): dimethyl carbonate (DMC). The Li‐electrolyte interface is investigated by galvanostatic and potentiostatic techniques as well as by electrochemical impedance spectroscopy, in order to allow the use of the graphene‐nanoplatelets as anode in advanced lithium‐ion battery. Indeed, the electrode is coupled with a LiFePO4 cathode in a battery having a relevant safety content, due to the ionic liquid‐based electrolyte that is characterized by an ionic conductivity of the order of 10−2 S cm−1, a transference number of 0.38 and a high electrochemical stability. The lithium ion battery delivers a capacity of the order of 150 mAh g−1 with an efficiency approaching 100%, thus suggesting the suitability of GNPs anode for application in advanced configuration energy storage systems.  相似文献   

18.
Harvesting energy from natural resources is of significant interest because of their abundance and sustainability. Seawater is the most abundant natural resource on earth, covering two‐thirds of the surface. The rechargeable seawater battery is a new energy storage platform that enables interconversion of electrical energy and chemical energy by tapping into seawater as an infinite medium. Here, an overview of the research and development activities of seawater batteries toward practical applications is presented. Seawater batteries consist of anode and cathode compartments that are separated by a Na‐ion conducting membrane, which allows only Na+ ion transport between the two electrodes. The roles and drawbacks of the three key components, as well as the development concept and operation principles of the batteries on the basis of previous reports are covered. Moreover, the prototype manufacturing lines for mass production and automation, and potential applications, particularly in marine environments are introduced. Highlighting the importance of engineering the cell components, as well as optimizing the system level for a particular application and thereby successful market entry, the key issues to be resolved are discussed, so that the seawater battery can emerge as a promising alternative to existing rechargeable batteries.  相似文献   

19.
Silicon holds great promise as an anode material for lithium‐ion batteries with higher energy density; its implication, however, is limited by rapid capacity fading. A catalytic growth of graphene cages on composite particles of magnesium oxide and silicon, which are made by magnesiothermic reduction reaction of silica particles, is reported herein. Catalyzed by the magnesium oxide, graphene cages can be conformally grown onto the composite particles, leading to the formation of hollow graphene‐encapsulated Si particles. Such materials exhibit excellent lithium storage properties in terms of high specific capacity, remarkable rate capability (890 mAh g?1 at 5 A g?1), and good cycling retention over 200 cycles with consistently high coulombic efficiency at a current density of 1 A g?1. A full battery test using LiCoO2 as the cathode demonstrates a high energy density of 329 Wh kg?1.  相似文献   

20.
The development of high‐capacity, Earth‐abundant, and stable cathode materials for robust aqueous Zn‐ion batteries is an ongoing challenge. Herein, ultrathin nickel cobaltite (NiCo2O4) nanosheets with enriched oxygen vacancies and surface phosphate ions (P–NiCo2O4‐x) are reported as a new high‐energy‐density cathode material for rechargeable Zn‐ion batteries. The oxygen‐vacancy and surface phosphate‐ion modulation are achieved by annealing the pristine NiCo2O4 nanosheets using a simple phosphating process. Benefiting from the merits of substantially improved electrical conductivity and increased concentration of active sites, the optimized P–NiCo2O4‐x nanosheet electrode delivers remarkable capacity (309.2 mAh g?1 at 6.0 A g?1) and extraordinary rate performance (64% capacity retention at 60.4 A g?1). Moreover, based on the P–NiCo2O4‐x cathode, our fabricated P–NiCo2O4‐x//Zn battery presents an impressive specific capacity of 361.3 mAh g?1 at the high current density of 3.0 A g?1 in an alkaline electrolyte. Furthermore, extremely high energy density (616.5 Wh kg?1) and power density (30.2 kW kg?1) are also achieved, which outperforms most of the previously reported aqueous Zn‐ion batteries. This ultrafast and high‐energy aqueous Zn‐ion battery is promising for widespread application to electric vehicles and intelligent devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号