首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Particulate matter (PM) is a major air pollutant in many regions, jeopardizing ecosystems and public health. Filtration at pollutant source is one of the most important ways to protect the environment, however, considering the high‐temperature exhaust gas emissions, effective removal of PM and related pollutants from their sources remains a major challenge. In this study, a resilient, heat‐resisting, and high‐efficiency PM filter based on yttria‐stabilized ZrO2 (YSZ) nanofiber sponge produced with a scalable solution blow spinning process is reported. The porous 3D sponge composed of YSZ nanofibers is lightweight (density of 20 mg cm?3) and resilient at both room temperature and high temperatures. At room‐temperature conditions, the YSZ nanofiber sponge exhibits 99.4% filtration efficiency for aerosol particles with size in the range of 20–600 nm, associated with a low pressure drop of only 57 Pa under an airflow velocity of 4.8 cm s?1. At a high temperature of 750 °C, the ceramic sponge maintains a high filtration efficiency of 99.97% for PM0.3–2.5 under a high airflow velocity of 10 cm s?1. A practical vehicle exhaust filter to capture particles with filtration efficiency of >98.3% is also assembled. Hence, the YSZ nanofiber sponge has enormous potential to be applied in industry.  相似文献   

2.
The filtration capacity of fibrous media for airborne particles is restricted by their thick diameter, low porosity, and limited frontal area. The ability to solve this problem would have broad technological implications for various air filtration applications; despite many past efforts, it remains a great challenge to achieve. Herein, a facile and scalable strategy to fabricate the ripple‐like polyamide‐6 nanofiber/nets (PA‐6 NF/N) air filter via combining electrospinning/netting technique with receiving substrate design is demonstrated. This proposed approach allows the scaffold filaments to orderly embed into 2D PA‐6 nanonets layer with Steiner‐tree structures and nanoscale diameter of ≈20 nm, resulting in the ripple‐like membrane with extremely small pore size, highly porous structure, and hugely extended frontal surface, by facilely adjusting its pleat span and pleat pitch. These unique structural advantages enable the ripple‐like PA‐6 NF/N filter to filtrate the ultrafine particles with high removal efficiency of 99.996%, low air resistance of 95 Pa, and robust quality factor of >0.11 Pa?1; using its superlight weight of 0.9 g m?2 and physical sieving manner. This approach has the potentialities to give rise to a novel generation of filter media displaying enhanced filtration capacity for various applications thanks to their nanoscale features and designed macrostructures.  相似文献   

3.
With rising global concerns over the alarming levels of particulate pollution, a sustainable air quality management is the need of the hour. Air filtration research has gained momentum in recent years. However, the research perspective is still blinkered toward formulating new fiber systems for the energy‐intensive electrospinning process to fabricate high quality factor air filters. A holistic approach on sustainable air filtration models is still lacking. The air filter model presented in this work uses a simple process involving water‐induced self‐organization and self‐regeneration of nanofibers, and an easy recycling route after the filter life that not only facilitates reuse of the microfibrous scaffold holding the nanofibers but also allows renewal of nanofibers. Three generations of air filters are fabricated and tested, all having high particulate matter (PM)‐adsorbing tendency, high filtration efficiency (>95%), and high Young's modulus (≈5 GPa). The renewable air filters offer a sustainable alternative to the present cost‐intensive electrospun air filters.  相似文献   

4.
Ultrathin organic thin‐film transistors (OTFTs) have received extensive attention due to their outstanding advantages, such as extreme flexibility, good conformability, ultralight weight, and compatibility with low‐cost and large‐area solution‐processed techniques. However, compared with the rigid substrates, it still remains a challenge to fabricate high‐performance ultrathin OTFTs. In this study, a high‐performance ultrathin 2,7‐dioctyl[1]benzothieno[3,2‐b][1]benzothiophene (C8‐BTBT) OTFT array is demonstrated via a simple spin‐coating method, with mobility as high as 11 cm2 V−1 s−1 (average mobility: 7.22 cm2 V−1 s−1), on/off current ratio of over 106, switching current of >1 mA, and a good yield ratio as high as 100%. The ultrathin thickness at ≈380 nm and the ultralight weight at ≈0.89 g m−2 enable the free‐standing OTFTs to imperceptibly adhere onto human skin, and even a damselfly wing without affecting its flying. More importantly, the OTFTs show good electrical characteristics and mechanical stability when conformed onto the curved surfaces and even folded in a book after 100 folding cycles. These results illustrate the broad application potential of this simply fabricated ultrathin OTFT in next‐generation electronics such as foldable displays and wearable devices.  相似文献   

5.
We report on the preparation and characterization of indium tin oxide (ITO) nanofiber films with a patterned architecture that are transparent and conductive with a uniform fiber size. ITO nanofiber films with a crisscross pattern were prepared by the electrospinning of a precursor solution containing ethanol, dimethyl formamide (DMF), indium chloride tetrahydrate, tin chloride pentahydrate and poly(vinyl pyrrolidone) (PVP K90) onto a metal mesh template, followed by calcinations after transfer to a glass substrate. The resulting ITO nanofibers had diameters of the order of 100?nm and were composed of single-crystalline nanoparticles that were pure in chemical composition. The morphology, crystallinity and performance of the resulting nanofibers could be controlled mainly by calcination. Optical and electrical investigations demonstrated that these nanofiber films are transparent conductors with an optical transmittance as high as 92%. The resulting patterned ITO nanofiber films would be suitable for applications such as solar cells, sensors and electromagnetic field filters.  相似文献   

6.
The use of free‐standing carbon‐based hybrids plays a crucial role to help fulfil ever‐increasing energy storage demands, but is greatly hindered by the limited number of active sites for fast charge adsorption/desorption processes. Herein, an efficient strategy is demonstrated for making defect‐rich bismuth sulfides in combination with surface nitrogen‐doped carbon nanofibers (dr‐Bi2S3/S‐NCNF) as flexible free‐standing electrodes for asymmetric supercapacitors. The dr‐Bi2S3/S‐NCNF composite exhibits superior electrochemical performances with an enhanced specific capacitance of 466 F g?1 at a discharge current density of 1 A g?1. The high performance of dr‐Bi2S3/S‐NCNF electrodes originates from its hierarchical structure of nitrogen‐doped carbon nanofibers with well‐anchored defect‐rich bismuth sulfides nanostructures. As modeled by density functional theory calculation, the dr‐Bi2S3/S‐NCNF electrodes exhibit a reduced OH? adsorption energy of ‐3.15 eV, compared with that (–3.06 eV) of defect‐free bismuth sulfides/surface nitrogen‐doped carbon nanofiber (df‐Bi2S3/S‐NCNF). An asymmetric supercapacitor is further fabricated by utilizing dr‐Bi2S3/S‐NCNF hybrid as the negative electrode and S‐NCNF as the positive electrode. This composite exhibits a high energy density of 22.2 Wh kg?1 at a power density of 677.3 W kg?1. This work demonstrates a feasible strategy to construct advanced metal sulfide‐based free‐standing electrodes by incorporating defect‐rich structures using surface engineering principles.  相似文献   

7.
Silk is a widely available, edible, biocompatible, and environmentally sustainable natural material. Particulate matter (PM) pollution has drawn considerable attention because it is a serious threat to public health. Herein, we report a human-friendly silk nanofiber air filter, which exhibits superior filtration efficiency for both PM2.5 and submicron particles with obviously low pressure drop and low basis weight compared to typical commercial microfiber air filters. Additionally, other functions such as antibacterial activity could be easily integrated into the silk nanofiber air filters, enabling the fabrication of multifunctional air filters. All the above characteristics, combined with the natural abundance and biocompatibility of silk, suggest a great potential for the use of silk nanofibers as air filters, especially as comfortable and personal air purifiers.
  相似文献   

8.
Particulate matter (PM) pollution has become a serious public health issue, especially with outbreaks of emerging infectious diseases. However, most present filters are bulky, opaque, and show low-efficiency PM0.3/pathogen interception and inevitable trade-off between PM removal and air permeability. Here, a unique electrospraying–netting technique is used to create spider-web-inspired network generator (SWING) air filters. Manipulation of the dynamic of the Taylor cone and phase separation of its ejected droplets enable the generation of 2D self-charging nanostructured networks on a large scale. The resultant SWING filters show exceptional long-range electrostatic property driven by aeolian vibration, enabling self-sustained PM adhesion. Combined with their Steiner-tree-structured pores (size 200–300 nm) consisting of nanowires (diameter 12 nm), the SWING filters exhibit high efficiency (>99.995% PM0.3 removal), low air resistance (<0.09% atmosphere pressure), high transparency (>82%), and remarkable bioprotective activity for biohazard pathogens. This work may shed light on designing new fibrous materials for environmental and energy applications.  相似文献   

9.
This study aims to assess the nanofiber directionality effects on optomechanical properties of a widely used transparent thermoplastic poly(methyl methacrylate) (PMMA). Aligned fiber-hybrid mats consisted of nylon-6 (PA-6) nanofibers and PMMA microfibers are prepared using a self-blending co-electrospinning method, followed by hot press molding to fabricate into transparent nanocomposites. Effects of nanofiber orientation degree in two orthogonal directions and loading fraction on the optomechanical behavior of the nanocomposites are examined. Optical transmittance differences parallel and perpendicular to the nanofibers’ orientation are found to vary in a range of 3.9–5.4% at 589 nm, and strong mechanical anisotropy is observed with the 1% PA-6/PMMA nanocomposites. A maximal of 3% PA-6 nanofiber loading maintains the nanocomposite high transmittance (>75%) with improved strength and toughness along the nanofiber axis. This study reveals evident anisotropic optomechanical properties of transparent nanocomposites, and highlights the great designability of transparent nanocomposites by using aligned nanofibers as the designing elements.  相似文献   

10.
Membrane separation technologies are of great interest in industrial processes such as water purification, gas separation, and materials synthesis. However, commercial filtration membranes have broad pore size distributions, leading to poor size cutoff properties. In this work, mesoporous silica thin membranes with uniform and large vertical mesochannels are synthesized via a simple biphase stratification growth method, which possess an intact structure over centimeter size, ultrathin thickness (≤50 nm), high surface areas (up to 1420 m2 g?1), and tunable pore sizes from ≈2.8 to 11.8 nm by adjusting the micelle parameters. The nanofilter devices based on the free‐standing mesoporous silica thin membranes show excellent performances in separating differently sized gold nanoparticles (>91.8%) and proteins (>93.1%) due to the uniform pore channels. This work paves a promising way to develop new membranes with well‐defined pore diameters for highly efficient nanosize‐based separation at the macroscale.  相似文献   

11.
Anode‐free sodium metal batteries (AF‐SMBs) can deliver high energy and enormous power, but their cycle lives are still insufficient for them to be practical as a power source in modern electronic devices and/or grid systems. In this study, a nanohybrid template based on high aspect‐ratio silver nanofibers and nitrogen‐rich carbon thin layers as a core–shell structure is designed to improve the Coulombic efficiency (CE) and cycling performance of AF‐SMBs. The catalytic nanohybrid templates dramatically reduce the voltage overshooting caused by metal nucleation to one‐fifth that of a bare Al foil electrode (≈6 mV vs ≈30 mV), and high average CE values of >99% are achieved over a wide range of current rates from 0.2 to 8 mA cm?2. Moreover, exceptionally long cycle lives for more than 1600 cycles and an additional 1500 cycles are achieved with a highly stable CE of >99.9%. These results show that AF‐SMBs are feasible with the nanohybrid electrode system.  相似文献   

12.
Load‐bearing soft tissues, e.g., cartilage, ligaments, and blood vessels, are made predominantly from water (65–90%) which is essential for nutrient transport to cells. Yet, they display amazing stiffness, toughness, strength, and deformability attributed to the reconfigurable 3D network from stiff collagen nanofibers and flexible proteoglycans. Existing hydrogels and composites partially achieve some of the mechanical properties of natural soft tissues, but at the expense of water content. Concurrently, water‐rich biomedical polymers are elastic but weak. Here, biomimetic composites from aramid nanofibers interlaced with poly(vinyl alcohol), with water contents of as high as 70–92%, are reported. With tensile moduli of ≈9.1 MPa, ultimate tensile strains of ≈325%, compressive strengths of ≈26 MPa, and fracture toughness of as high as ≈9200 J m?2, their mechanical properties match or exceed those of prototype tissues, e.g., cartilage. Furthermore, with reconfigurable, noncovalent interactions at nanomaterial interfaces, the composite nanofiber network can adapt itself under stress, enabling abiotic soft tissue with multiscale self‐organization for effective load bearing and energy dissipation.  相似文献   

13.
Semitransparent (ST) photovoltaics (PVs) with selective absorption in the UV or/and near‐infrared (NIR) range(s) and reduced energy losses, are critical for high‐efficiency solar‐window applications. Here, a high‐performance tandem ST‐PV with selected absorption in the desirable regions of the solar spectrum is demonstrated. An ultralarge‐bandgap perovskite film (FAPbBr2.43Cl0.57, Eg ≈ 2.36 eV) is first developed to fulfil efficient selective absorption in the UV region. After optimization, the corresponding ST single junction (SJ) PV exhibits an averaged transmittance (AVT) of ≈68% and an efficiency of ≈7.5%. By sequentially reducing the visible absorbing component in a low‐bandgap organic bulk‐heterojunction layer, an ST‐PV with selective absorption in the NIR is achieved with a power conversion efficiency (PCE) of 5.9% and a high AVT of 62%. The energy loss associated with the SJ ST‐PVs is further reduced with a tandem architecture, which affords a high PCE of 10.7%, an AVT of 52.91%, and a light utilization efficiency up to 5.66%. These results represent the best balance of AVT and PCE among all ST‐PVs reported so far, and this design should pave the road for solar windows of high performance.  相似文献   

14.
目的以废弃鱿鱼顶骨为原料,在温和条件下提取并制备高强度、高透明度的β-甲壳素纳米纤维薄膜。方法常温下利用温和提取法,从鱿鱼顶骨中提取β-甲壳素纳米纤维(β-ChNF);通过真空抽滤,制备β-甲壳素纳米纤维薄膜(β-ChNF/m)。并与以蟹壳为原料“高温提取”制备所得的α-甲壳素纳米纤维薄膜(α-ChNF/m)进行对比;通过力学性能、结晶结构、微观构造、表面化学特性及透光性分析,探索“温和条件”提取法对薄膜性能的影响规律。结果利用温和提取法,能最大程度保留β-ChNF在鱿鱼顶骨中的天然纳米形态与性能;与从蟹壳中提取所得α-甲壳素相比,研究制备所得β-ChNF/m比α-ChNF/m力学强度提高了近1.5倍,断裂伸长率提高了3倍,且具备优异的透光性,透光率为90%,雾度为4%。结论以鱿鱼顶骨为原料制备所得β-ChNF/m具有优异的透光性、力学性能,有望作为柔性电子标签基材应用于智慧包装、包装智能检测等研究领域。  相似文献   

15.
利用静电纺丝技术制备了不同纺丝时间的聚对苯二甲酸乙二醇酯(PET)纳米纤维膜,将PET纳米纤维膜、热熔型胶膜及涤纶针刺毡通过热处理复合,制备了三明治结构的PET纳米纤维膜/涤纶针刺毡过滤复合材料,利用SEM分析了PET纳米纤维膜形貌,通过TGA确定了PET纳米纤维膜的热处理条件,对不同纺丝时间的PET纳米纤维膜/涤纶针刺毡过滤复合材料透气性能、过滤性能进行了研究。结果表明:纺丝液浓度为18%,纺丝电压为15 kV,接收距离为21 cm,环境温度为13℃,环境湿度为20%条件下得到的PET纳米纤维膜纤维平均直径为514.95 nm;PET纳米纤维膜与涤纶针刺毡的复合温度为115℃;随纺丝时间的增加,PET纳米纤维膜的密度增加,PET纳米纤维膜/涤纶针刺毡过滤复合材料对颗粒物的过滤效率增大,透气性下降,当密度为3.86 g/m2时,PET纳米纤维膜/涤纶针刺毡过滤复合材料的过滤性能最优,其品质因子QF明显优于常规涤纶针刺毡,对1 μm以下颗粒物的过滤效率均高于93%,效率提高了58%以上,表现出优异的过滤性能。   相似文献   

16.
The lethal danger of particulate matter (PM) pollution on health leads to the development of challenging individual protection materials that should ideally exhibit a high PM2.5 purification efficiency, low air resistance, an important moisture‐vapor transmission rate (MVTR), and an easy‐to‐clean property. Herein, a cleanable air filter able to rapidly transfer moisture and efficiently capture PM2.5 is designed by electrospinning superhydrophilic polyacrylonitrile/silicon‐dioxide fibers as the adsorption–desorption vector for moisture‐vapor, and hydrophobic polyvinylidene fluoride fibers as the repellent components to avoid the formation of capillary water under high humidity. The desorption rate of water molecules increases from 10 to 18 mg min?1, while the diameters of polyacrylonitrile fibers reduce from 1.02 to 0.14 µm. Significantly, by introducing the hydroxyl on the surface of polyacrylonitrile nanofibers, rapid adsorption–desorption of the water molecules is observed. Moreover, by constructing a hydrophobic to super‐hydrophilic gradient structure, the MVTR increases from 10 346 to 14 066 g m?2 d?1. Interestingly, the prepared fibrous membranes is easy to clean. More importantly, benefiting from enhanced slip effect, the resultant fibrous membranes presented a low air resistance of 86 Pa. A field test in Shanghai shows that the air filter maintains stable PM2.5 purification efficiency of 99.99% at high MVTR during haze event.  相似文献   

17.
Displaying information on transparent screens offers new opportunities in next‐generation electronics, such as augmented reality devices, smart surgical glasses, and smart windows. Outstanding luminance and transparency are essential for such “see‐through” displays to show vivid images over clear background view. Here transparent quantum dot light‐emitting diodes (Tr‐QLEDs) are reported with high brightness (bottom: ≈43 000 cd m?2, top: ≈30 000 cd m?2, total: ≈73 000 cd m?2 at 9 V), excellent transmittance (90% at 550 nm, 84% over visible range), and an ultrathin form factor (≈2.7 µm thickness). These superb characteristics are accomplished by novel electron transport layers (ETLs) and engineered quantum dots (QDs). The ETLs, ZnO nanoparticle assemblies with ultrathin alumina overlayers, dramatically enhance durability of active layers, and balance electron/hole injection into QDs, which prevents nonradiative recombination processes. In addition, the QD structure is further optimized to fully exploit the device architecture. The ultrathin nature of Tr‐QLEDs allows their conformal integration on various shaped objects. Finally, the high resolution patterning of red, green, and blue Tr‐QLEDs (513 pixels in.?1) shows the potential of the full‐color transparent display.  相似文献   

18.
Despite substantial progress in the science and technology of 2D nanomaterials, facile fabrication of ultrathin 2D metals remains challenging. Herein, an efficient hot‐pressing method is developed to fabricate free‐standing ultrathin Bi nanosheets from Bi nanoparticles. Highly crystalline Bi nanosheets with thickness as low as ≈2 nm and area of more than several micrometers are successfully fabricated on silicon substrates. The ultrathin Bi nanosheets exhibit morphology and structural dependent enhanced broad range photoemission in visible region of spectrum. Our cost‐effective hot‐pressing strategy may open an insight for production, application, and deficient fundamental understanding of other 2D semimetals/metalloids and noble metals.  相似文献   

19.
Freely suspended nanofibers, such as spider silk, harnessing their small diameter (sub‐micrometer) and spanning fiber morphology, behave as a nonresonating acoustic sensor. The associated sensing characteristics, departing from conventional resonant acoustic sensors, could be of tremendous interest for the development of high sensitivity, broadband audible sensors for applications in environmental monitoring, biomedical diagnostics, and internet‐of‐things. Herein, a low packing density, freely suspended nanofiber mesh with a piezoelectric active polymer is fabricated, demonstrating a self‐powered acoustic sensing platform with broad sensitivity bandwidth covering 200–5000 Hz at hearing‐safe sound pressure levels. Dynamic near‐field electrospinning is developed to fabricate in situ poled poly(vinylidene fluoride‐co‐trifluoroethylene) (P(VDF‐TrFE)) nanofiber mesh (average fiber diameter ≈307 nm), exhibiting visible light transparency greater than 97%. With the ability to span the nanomesh across a suspension distance of 3 mm with minimized fiber stacking (≈18% fiber packing density), individual nanofibers can freely imitate the acoustic‐driven fluctuation of airflow in a collective manner, where piezoelectricity is harvested at two‐terminal electrodes for direct signal collection. Applications of the nanofiber mesh in music recording with good signal fidelity are demonstrated.  相似文献   

20.
Large‐size ultrathin 2D materials, with extensive applications in optics, medicine, biology, and semiconductor fields, can be prepared through an existing common physical and chemical process. However, the current exfoliation technologies still need to be improved upon with urgency. Herein, a novel and simple “ultrasonic‐ball milling” strategy is reported to effectively obtain high quality and large size ultrathin 2D materials with complete lattice structure through the introduction of moderate sapphire (Al2O3) abrasives in a liquid phase system. Ultimately numerous high‐quality ultrathin h‐BN, graphene, MoS2, WS2, and BCN nanosheets are obtained with large sizes ranging from 1–20 µm, small thickness of ≈1–3 nm and a high yield of over 20%. Utilizing shear and friction force synergistically, this strategy provides a new method and alternative for preparing and optimizing large size ultrathin 2D materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号