首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The application of nanotechnology in the field of drug delivery has attracted much attention in the latest decades. Recent breakthroughs on the morphology control and surface functionalization of inorganic‐based delivery vehicles, such as mesoporous silica nanoparticles (MSNs), have brought new possibilities to this burgeoning area of research. The ability to functionalize the surface of mesoporous‐silica‐based nanocarriers with stimuli‐responsive groups, nanoparticles, polymers, and proteins that work as caps and gatekeepers for controlled release of various cargos is just one of the exciting results reported in the literature that highlights MSNs as a promising platform for various biotechnological and biomedical applications. This review focuses on the most recent progresses in the application of MSNs for intracellular drug delivery. The latest research on the pathways of entry into live mammalian and plant cells together with intracellular trafficking are described. One of the main areas of interest in this field is the development of site‐specific drug delivery vehicles; the contribution of MSNs toward this topic is also summarized. In addition, the current research progress on the biocompatibility of this material in vitro and in vivo is discussed. Finally, the latest breakthroughs for intracellular controlled drug release using stimuli‐responsive mesoporous‐silica‐based systems are described.  相似文献   

2.
The remarkable progress of nanotechnology and its application in biomedicine have greatly expanded the ranges and types of biomaterials from traditional organic material‐based nanoparticles (NPs) to inorganic biomaterials or organic/inorganic hybrid nanocomposites due to the unprecedented advantages of the engineered inorganic material‐based NPs. Colloidal mesoporous silica NPs (MSNs), one of the most representative and well‐established inorganic materials, have been promoted into biology and medicine, and shifted from extensive in vitro research towards preliminary in vivo assays in small‐animal disease models. In this comprehensive review, the recent progresses in chemical design and engineering of MSNs‐based biomaterials for in vivo biomedical applications has been detailed and overviewed. Due to the intrinsic structural characteristics of elaborately designed MSNs such as large surface area, high pore volume and easy chemical functionalization, they have been extensively investigated for therapeutic, diagnostic and theranostic (concurrent diagnosis and therapy) purposes, especially in oncology. Systematic in vivo bio‐safety evaluations of MSNs have revealed the evidences that the in vivo bio‐behaviors of MSNs are strongly related to their preparation prodecures, particle sizes, geometries, surface chemistries, dosing parameters and even administration routes. In vivo pharmacokinetics and pharmacodynamics further demonstrated the effectiveness of MSNs as the passively and/or actively targeted drug delivery systems (DDSs) for cancer chemotherapy. Especially, the advance of nano‐synthetic chemistry enables the production of composite MSNs for advanced in vivo therapeutic purposes such as gene delivery, stimuli‐responsive drug release, photothermal therapy, photodynamic therapy, ultrasound therapy, or anti‐bacteria in tissue engineering, or as the contrast agents for biological and diagnostic imaging. Additionally, the critical issues and potential challenges related to the chemical design/synthesis of MSNs‐based “magic bullet” by advanced nano‐synthetic chemistry and in vivo evaluation have been discussed to highlight the issues scientists face in promoting the translation of MSNs‐based DDSs into clinical trials.  相似文献   

3.
Antimonene (AM) is a recently described two‐dimensional (2D) elemental layered material. In this study, a novel photonic drug‐delivery platform based on 2D PEGylated AM nanosheets (NSs) is developed. The platform's multiple advantages include: i) excellent photothermal properties, ii) high drug‐loading capacity, iii) spatiotemporally controlled drug release triggered by near‐infrared (NIR) light and moderate acidic pH, iv) superior accumulation at tumor sites, v) deep tumor penetration by both extrinsic stimuli (i.e., NIR light) and intrinsic stimuli (i.e., pH), vi) excellent multimodal‐imaging properties, and vii) significant inhibition of tumor growth with no observable side effects and potential degradability, thus addressing several key limitations of cancer nanomedicines. The intracellular fate of the prepared NSs is also revealed for the first time, providing deep insights that improve cellular‐level understanding of the nano–bio interactions of AM‐based NSs and other emerging 2D nanomaterials. To the best of knowledge, this is the first report on 2D AM‐based photonic drug‐delivery platforms, possibly marking an exciting jumping‐off point for research into the application of 2D AM nanomaterials in cancer theranostics.  相似文献   

4.
This review describes emerging trends, basic principles, applications, and future challenges for designing next generation responsive “smart” surface capsules. Advances and importance of “surface” capsules which are not deposited onto the surface but are built into the surface are highlighted for selective applications with specific examples of surface sponge structures formed by high intensity ultrasonic surface treatment (HIUS). Surface capsules can be adapted for biomedical applications, membrane materials, lab‐on‐chip, organ‐on‐chip, and for template synthesis. They provide attractive self‐healing anticorrosion and antifouling prospects. Nowadays delivery systems are built from inorganic, organic, hybrid, biological materials to deliver various drugs from low molecular weight substances to large protein molecules and even live cells. It is important that capsules are designed to have time prolonged release features. Available stimuli to control capsule opening are physical, chemical and biological ones. Understanding the underlying mechanisms of capsule opening by different stimuli is essential for developing new methods of encapsulation, release, and targeting. Development of “smart” surface capsules is preferable to respond to multiple stimuli. More and more often a new generation of “smart” capsules is designed by a bio‐inspired approach.  相似文献   

5.
Biomolecular self‐assembly is a powerful approach for fabricating supramolecular architectures. Over the past decade, a myriad of biomolecular assemblies, such as self‐assembly proteins, lipids, and DNA nanostructures, have been used in a wide range of applications, from nano‐optics to nanoelectronics and drug delivery. The method of controlling when and where the self‐assembly starts is essential for assembly dynamics and functionalization. Here, train‐shaped DNA nanostructures are actively self‐assembled using DNA tiles as artificial “carriages,” hairpin structures as “couplers,” and initiators of catalytic hairpin assembly (CHA) reactions as “wrenches.” The initiator wrench can selectively open the hairpin couplers to couple the DNA tile carriages with high product yield. As such, DNA nanotrains are actively prepared with two, three, four, or more carriages. Furthermore, by flexibly modifying the carriages with “biotin seats” (biotin‐modified DNA tiles), streptavidin “passengers” are precisely arranged in corresponding seats. The applications of the CHA‐triggered self‐assembly mechanism are also extended for assembling the large DNA origami dimer. With the creation of 1D architectures established, it is thought that this CHA‐triggered self‐assembly mechanism may provide a new element of control for complex autonomous assemblies from a variety of starting materials with specific sites and times.  相似文献   

6.
The mononuclear phagocyte system (MPS, e.g., liver, spleen) is often treated as a “blackbox” by nanoresearchers in translating nanomedicines. Often, most of the injected nanomaterials are sequestered by the MPS, preventing their delivery to the desired disease areas. Here, this imperfection is exploited by applying nano‐antioxidants with preferential liver uptake to directly prevent hepatic ischemia‐reperfusion injury (IRI), which is a reactive oxygen species (ROS)‐related disease. Ceria nanoparticles (NPs) are selected as a representative nano‐antioxidant and the detailed mechanism of preventing IRI is investigated. It is found that ceria NPs effectively alleviate the clinical symptoms of hepatic IRI by scavenging ROS, inhibiting activation of Kupffer cells and monocyte/macrophage cells. The released pro‐inflammatory cytokines are then significantly reduced and the recruitment and infiltration of neutrophils are minimized, which suppress subsequent inflammatory reaction involved in the liver. The protective effect of nano‐antioxidants against hepatic IRI in living animals and the revealed mechanism herein suggests their future use for the treatment of hepatic IRI in the clinic.  相似文献   

7.
Biomimetic camouflage, i.e., using natural cell membranes for drug delivery, has demonstrated advantages over synthetic materials in both pharmacokinetics and biocompatibility, and so represents a promising solution for the development of safe nanomedicine. However, only limited efforts have been dedicated to engineering such camouflage to endow it with optimized or additional properties, in particular properties critical to a “smart” drug delivery system, such as stimuli‐responsive drug release. A pH‐responsive biomimetic “platesome” for specific drug delivery to tumors and tumor‐triggered drug release is described. This platesome nanovehicle is constructed by merging platelet membranes with functionalized synthetic liposomes and exhibits enhanced tumor affinity, due to its platelet membrane–based camouflage, and selectively releases its cargo in response to the acidic microenvironment of lysosomal compartments. In mouse cancer models, it shows significantly better antitumor efficacy than nanoformulations based on a platesome without pH responsiveness or those based on traditional pH‐sensitive liposomes. A convenient way to incorporate stimuli‐responsive features into biomimetic nanoparticles is described, demonstrating the potential of engineered cell membranes as biomimetic camouflages for a new generation of biocompatible and efficient nanocarriers.  相似文献   

8.
Controlled delivery of protein therapeutics remains a challenge. Here, the inclusion of diselenide‐bond‐containing organosilica moieties into the framework of silica to fabricate biodegradable mesoporous silica nanoparticles (MSNs) with oxidative and redox dual‐responsiveness is reported. These diselenide‐bridged MSNs can encapsulate cytotoxic RNase A into the 8–10 nm internal pores via electrostatic interaction and release the payload via a matrix‐degradation controlled mechanism upon exposure to oxidative or redox conditions. After surface cloaking with cancer‐cell‐derived membrane fragments, these bioinspired RNase A‐loaded MSNs exhibit homologous targeting and immune‐invasion characteristics inherited from the source cancer cells. The efficient in vitro and in vivo anti‐cancer performance, which includes increased blood circulation time and enhanced tumor accumulation along with low toxicity, suggests that these cell‐membrane‐coated, dual‐responsive degradable MSNs represent a promising platform for the delivery of bio‐macromolecules such as protein and nucleic acid therapeutics.  相似文献   

9.
Poor deep tumor penetration and incomplete intracellular drug release remain challenges for antitumor nanomedicine application in clinical settings. Herein, a nanomedicine (RLPA‐NPs) is developed that can achieve prolonged blood circulation, deep tumor penetration, active‐targeting of cancer cells, endosome/lysosome escape, and intracellular selectivity self‐amplified drug release for effective drug delivery. The RLPA‐NPs are constructed by encapsulation of a pH‐sensitive polymer octadecylamine‐poly(aspartate‐1‐(3‐aminopropyl) imidazole) (OA‐P(Asp‐API)) and a ROS‐generation agent, β‐Lapachone (Lap), in micelles assembled by the tumor‐penetration peptide internalizing RGD (iRGD)‐modified ROS‐responsive paclitaxel (PTX)‐prodrug. iRGD could promote RLPA‐NPs penetration into deep tumor tissue, and specific targeting to cancer cells. After internalization by cancer cells through receptor‐mediated endocytosis, OA‐P(Asp‐API) can rapidly protonate in the endosome's acidic environment, resulting in RLPA‐NPs escape from the endosome through the “proton sponge effect”. At the same time, the RLPA‐NPs micelle disassembles, releasing Lap and PTX‐prodrug. Subsequently, the released Lap could generate ROS, consequently amplifying and accelerating PTX release to kill tumor cells. The in vitro and in vivo studies demonstrated that RLPA‐NPs can significantly improve the therapeutic effect compared to control groups. Therefore, RLPA‐NPs are a promising nanoplatform for overcoming multiple physiological and pathological barriers to enhance drug delivery.  相似文献   

10.
A new theranostic nanoplatform, comprising of monodisperse zirconium metal‐organic frameworks (MOFs) as drug carriers and carboxylatopillar[5]arene‐based supramolecular switches as gating entities, is constructed, and controlled drug release triggered by bio‐friendly Zn2+ ions (abundant in synaptic vesicles) and auxiliary thermal stimulus is realized. This on‐command drug delivery system exhibits large pore sizes for drug encapsulation, excellent biodegradability and biocompatibility, extremely low cytotoxicity and premature drug release, and superior dual‐stimuli responsiveness, opening a new avenue in targeted drug delivery and controlled release of therapeutic agents, especially in the treatment of central nervous system diseases.  相似文献   

11.
A novel type of nanovehicle (NV) based on stimuli‐responsive supramolecular peptide‐amphiphiles (SPAs, dendritic poly (L‐lysine) non‐covalently linked poly (L‐leucine)) is developed for intracellular drug delivery. To determine the pH‐dependent mechanism, the supramolecular peptide‐amphiphile system (SPAS) is investigated at different pH conditions using a variety of physical and chemical approaches. The pH‐triggered disassembly of SPAS can be attributed to the disappearance of non‐covalent interactions within SPAs around the isoelectric point of poly (L‐leucine). SPAS is found to encapsulate guest molecules at pH 7.4 but release them at pH 6.2. In this way, SPAS is able to act as a smart NV to deliver its target to tumor cells using intracellular pH as a trigger. The DOX‐loaded NVs are approximately 150 nm in size. In vitro release profiles and confocal laser scanning microscopy (CLSM) images of HepG2 cells confirm that lower pH conditions can trigger the disassembly of NVs and so achieve pH‐dependent intracellular DOX delivery. In vitro cytotoxicity of the DOX‐loaded NVs to HepG2 cells demonstrate that the smart NVs enhance the efficacy of hydrophobic DOX. Fluorescence‐activated cell sorting (FACS) and CLSM results show that the NVs can enhance the endocytosis of DOX into HepG2 cells considerably and deliver DOX to the nuclei.  相似文献   

12.
Triggerable drug delivery systems enable on‐demand controlled release profiles that may enhance therapeutic effectiveness and reduce systemic toxicity. Recently, a number of new materials have been developed that exhibit sensitivity to visible light, near‐infrared (NIR) light, ultrasound, or magnetic fields. This responsiveness can be triggered remotely to provide flexible control of dose magnitude and timing. Here we review triggerable materials that range in scale from nano to macro, and are activated by a range of stimuli.  相似文献   

13.
The general aim of our work is to build a set of engineered protein channels to be used in liposome and polymersome technology with a special emphasis in delivery applications. The channel proteins FhuA and OmpF are modified to answer to chemical (Angew. Chem. Int. Ed., 2008), pH (Soft Matter, 2011), and light stimuli. In this study a first light triggered release system is developed by employing the photo‐cleavable label 6‐nitroveratryloxycarbonyl chloride (NVOC‐Cl) and FhuA variants with six, five, and only one lysine in the barrel. Kinetic studies on liposome inserted FhuA variants, using 3,3′,5,5′‐tetramethylbenzidine (TMB)/horseradish peroxidase (HRP) as detection system led to the discovery of a single labeled amino acid position, K556, that is sufficient to act as a gate and that controls TMB translocation through the FhuA Δ1‐160 pore. Background conversion of TMB in the absence of FhuA Δ1‐160 ranges from 13 (non‐photo‐irradiated) to 27 (photo‐irradiated) n · s?1. A “fully” open FhuA Δ1‐160 channel reaches TMB conversions up to 113 × 10?9 M · s?1; a “fully” labeled FhuA Δ1‐160 shows a TMB conversion of 29 × 10?9 M · s?1 which is close to background levels. The engineered FhuA Δ1‐160 with only one lysine in the barrel interior (K556) shows a TMB conversion of 33 × 10?9 M · s?1 after labeling and after NVOC photo‐cleavage a conversion of 94 × 10?9 M · s?1. The latter proves the gate keeping role of position 556 in sterically modulating TMB fluxes. CD spectra, cryogenic TEM, and DLS experiments were performed to characterize the employed liposomes with embedded FhuA Δ1‐160 variants.  相似文献   

14.
The controlled presentation of proteins from and within materials remains of significant interest for many bioengineering applications. Though “smart” platforms offer control over protein release in response to a single external cue, no strategy has been developed to trigger delivery in response to user‐specified combinations of environmental inputs, nor to independently control the release of multiple species from a homogenous material. Here, a modular semisynthetic scheme is introduced to govern the release of site‐specifically modified proteins from hydrogels following Boolean logic. A sortase‐mediated transpeptidation reaction is used to generate recombinant proteins C‐terminally tethered to gels through environmentally sensitive degradable linkers. By varying the connectivity of multiple stimuli‐labile moieties within these customizable linkers, YES/OR/AND control of protein release is exhaustively demonstrated in response to one and two‐input combinations involving enzyme, reductant, and light. Tethering of multiple proteins each through a different stimuli‐sensitive linker permits their independent and sequential release from a common material. It is expected that these methodologies will enable new opportunities in tissue engineering and therapeutic delivery.  相似文献   

15.
In the context of diligent efforts to improve the tumor targeting efficiency of drug carriers, a shape‐persistent polymersome which possess a pH‐tunable membrane as well as folate targeting antennae is reported. The membrane of such polymersomes behaves as gate which undergoes “on” and “off” switches in response to pH stimuli. Thus, polymersomes can effectively prohibit the premature release of chemotherapeutic agents such as doxorubicin in physiological conditions, but promote drug release once they are triggered in the acidified endosomal compartment. Importantly, the folate moieties are installed on the surface of polymersomes as protruding antennae by doping the polymersomes with folate‐terminated block copolymers designed to have longer PEG segments. Thereby, the folate moieties are freed from concealment and steric effects exerted by the dense PEG corona. The cellular uptake of the FA‐antennae polymersomes by tumor cells is significantly enhanced facilitated by the freely accessible folate antennae; however, the normal cells record a low level of cellular uptake due to the stealth property of the PEG corona. Overall, the excellent biocompatibility, controlled permeability, targeted internalization, as well as selective cytotoxicity of such polymersomes set up the basis for properly smart carrier for targeted drug delivery.  相似文献   

16.
A novel pH‐ and redox‐ dual‐responsive tumor‐triggered targeting mesoporous silica nanoparticle (TTTMSN) is designed as a drug carrier. The peptide RGDFFFFC is anchored on the surface of mesoporous silica nanoparticles via disulfide bonds, which are redox‐responsive, as a gatekeeper as well as a tumor‐targeting ligand. PEGylated technology is employed to protect the anchored peptide ligands. The peptide and monomethoxypolyethylene glycol (MPEG) with benzoic‐imine bond, which is pH‐sensitive, are then connected via “click” chemistry to obtain TTTMSN. In vitro cell research demonstrates that the targeting property of TTTMSN is switched off in normal tissues with neutral pH condition, and switched on in tumor tissues with acidic pH condition after removing the MPEG segment by hydrolysis of benzoic‐imine bond under acidic conditions. After deshielding of the MPEG segment, the drug‐loaded nanoparticles are easily taken up by tumor cells due to the exposed peptide targeting ligand, and subsequently the redox signal glutathione in tumor cells induces rapid drug release intracellularly after the cleavage of disulfide bond. This novel intelligent TTTMSN drug delivery system has great potential for cancer therapy.  相似文献   

17.
A smart release system responsive to near‐infrared (NIR) light is developed for intracellular drug delivery. The concept is demonstrated by coencapsulating doxorubicin (DOX) (an anticancer drug) and IR780 iodide (IR780) (an NIR‐absorbing dye) into nanoparticles made of a eutectic mixture of naturally occurring fatty acids. The eutectic mixture has a well‐defined melting point at 39 °C, and can be used as a biocompatible phase‐change material for NIR‐triggered drug release. The resultant nanoparticles exhibit prominent photothermal effect and quick drug release in response to NIR irradiation. Fluorescence microscopy analysis indicates that the DOX trapped in the nanoparticles can be efficiently released into the cytosol under NIR irradiation, resulting in enhanced anticancer activity. A new platform is thus offered for designing effective intracellular drug‐release systems, holding great promise for future cancer therapy.  相似文献   

18.
Chemical logic gates can be fabricated by synthesizing molecules that have the ability to detect external stimuli (e.g., temperature or pH) and provide logical outputs. It is, however, challenging to fabricate a system that consists of many logic gates using this method: complex molecules can be difficult to synthesize and these logic gates typically cannot be integrated together. Here, we fabricated different types of logic gates by assembling a combination of different types of stimuli‐responsive hydrogels that change their size under the influence of one type of stimulus. Importantly, the preparation of these stimuli‐responsive hydrogels is widely reported and technically simple. Through designing the geometry of the systems, we fabricated the YES, NOT, OR, AND, NOR, and NAND gates. Although the hydrogels respond to different types of stimuli, their outputs are the same: a change in size of the hydrogel. Hence, we show that the logic gates can be integrated easily (e.g., by connecting an AND gate to an OR gate). In addition, we fabricated a standalone system with the size of a normal drug tablet (i.e., a “smart tablet”) that can analyze (or diagnose) different stimuli and control the release of a chemical (or drug) via the logic gates.  相似文献   

19.
Reinforcing hydrogels with a rigid scaffold is a promising method to greatly expand the mechanical and physical properties of hydrogels. One of the challenges of creating hydrogel composites is the significant stress that occurs due to swelling mismatch between the water‐swollen hydrogel matrix and the rigid skeleton in aqueous media. This stress can cause physical deformation (wrinkling, buckling, or fracture), preventing the fabrication of robust composites. Here, a simple yet versatile method is introduced to create “macroscale” hydrogel composites, by utilizing a rigid reinforcing phase that can relieve stress‐induced deformation. A low‐melting‐point alloy that can transform from a load‐bearing solid state to a free‐deformable liquid state at relatively low temperature is used as a reinforcing skeleton, which enables the release of any swelling mismatch, regardless of the matrix swelling degree in liquid media. This design can generally provide hydrogels with hybridized functions, including excellent mechanical properties, shape memory, and thermal healing, which are often difficult or impossible to achieve with single‐component hydrogel systems. Furthermore, this technique enables controlled electrochemical reactions and channel‐structure templating in hydrogel matrices. This work may play an important role in the future design of soft robots, wearable electronics, and biocompatible functional materials.  相似文献   

20.
Here, a smart fluid‐controlled surface is designed, via the rational integration of the unique properties of three natural examples, i.e., the unidirectional wetting behaviors of butterfly's wing, liquid‐infused “slippery” surface of the pitcher plant, and the motile microcilia of micro‐organisms. Anisotropic wettability, lubricated surfaces, and magnetoresponsive microstructures are assembled into one unified system. The as‐prepared surface covered by tilted microcilia achieves significant unidirectional droplet adhesion and sliding. Regulating by external magnet field, the directionality of ferromagnetic microcilia can be synergistically switched, which facilitates a continuous and omnidirectional‐controllable water delivery. This work opens an avenue for applications of anisotropic wetting surfaces, such as complex‐flow distribution and liquid delivery, and extend the design approach of multi‐bioinspiration integration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号