首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
All‐nanocrystal (NC)‐based and all‐solution‐processed wearable resistance temperature detectors (RTDs) are introduced. The charge transport mechanisms of Ag NC thin films are engineered through various ligand treatments to design high performance RTDs. Highly conductive Ag NC thin films exhibiting metallic transport behavior with high positive temperature coefficients of resistance (TCRs) are achieved through tetrabutylammonium bromide treatment. Ag NC thin films showing hopping transport with high negative TCRs are created through organic ligand treatment. All‐solution‐based, one‐step photolithography techniques that integrate two distinct opposite‐sign TCR Ag NC thin films into an ultrathin single device are developed to decouple the mechanical effects such as human motion. The unconventional materials design and strategy enables highly accurate, sensitive, wearable and motion‐free RTDs, demonstrated by experiments on moving or curved objects such as human skin, and simulation results based on charge transport analysis. This strategy provides a low cost and simple method to design wearable multifunctional sensors with high sensitivity which could be utilized in various fields such as biointegrated sensors or electronic skin.  相似文献   

2.
The ability to tune gauge factors in terms of magnitude and orientation is important for wearable and conformal electronics. Herein, a sensor device is described which is fabricated by assembling and printing molecularly linked thin films of gold nanoparticles on flexible microelectrodes with unusually high and anisotropic gauge factors. A sharp difference in gauge factors up to two to three orders of magnitude between bending perpendicular (B) and parallel (B||) to the current flow directions is observed. The origin of the unusual high and anisotropic gauge factors is analyzed in terms of nanoparticle size, interparticle spacing, interparticle structure, and other parameters, and by considering the theoretical aspects of electron conduction mechanism and percolation pathway. A critical range of resistivity where a very small change in strain and the strain orientation is identified to impact the percolation pathway in a significant way, leading to the high and anisotropic gauge factors. The gauge anisotropy stems from molecular and nanoscale fine tuning of interparticle properties of molecularly linked nanoparticle assembly on flexible microelectrodes, which has important implication for the design of gauge sensors for highly sensitive detection of deformation in complex sensing environment or on complex curved surfaces such as wearable electronics and skin sensors.  相似文献   

3.
The development of omnidirectionally stretchable pressure sensors with high performance without stretching‐induced interference has been hampered by many challenges. Herein, an omnidirectionally stretchable piezoresistive pressure‐sensing device is demonstrated by combining an omniaxially stretchable substrate with a 3D micropattern array and solution‐printing of electrode and piezoresistive materials. A unique substrate structural design and materials mean that devices that are highly sensitive are rendered, with a stable out‐of‐plane pressure response to both static (sensitivity of 0.5 kPa?1 and limit of detection of 28 Pa) and dynamic pressures and the minimized in‐plane stretching responsiveness (a small strain gauge factor of 0.17), achieved through efficient strain absorption of the electrode and sensing materials. The device can detect human‐body tremors, as well as measure the relative elastic properties of human skin. The omnidirectionally stretchable pressure sensor with a high pressure sensitivity and minimal stretch‐responsiveness yields great potential to skin‐attachable wearable electronics, human–machine interfaces, and soft robotics applications.  相似文献   

4.
Multifunctional microelectronic components featuring large stretchability, high sensitivity, high signal‐to‐noise ratio (SNR), and broad sensing range have attracted a huge surge of interest with the fast developing epidermal electronic systems. Here, the epidermal sensors based on all‐carbon collaborative percolation network are demonstrated, which consist 3D graphene foam and carbon nanotubes (CNTs) obtained by two‐step chemical vapor deposition processes. The nanoscaled CNT networks largely enhance the stretchability and SNR of the 3D microarchitectural graphene foams, endowing the strain sensor with a gauge factor as high as 35, a wide reliable sensing range up to 85%, and excellent cyclic stability (>5000 cycles). The flexible and reversible strain sensor can be easily mounted on human skin as a wearable electronic device for real‐time and high accuracy detecting of electrophysiological stimuli and even for acoustic vibration recognition. The rationally designed all‐carbon nanoarchitectures are scalable, low cost, and promising in practical applications requiring extraordinary stretchability and ultrahigh SNRs.  相似文献   

5.
Although there have been remarkable improvements in stretchable strain sensors, the development of strain sensors with scalable fabrication techniques and which both high sensitivity and stretchability simultaneously is still challenging. In this work, a stretchable strain sensor based on overlapped carbon nanotube (CNT) bundles coupled with a silicone elastomer is presented. The strain sensor with overlapped CNTs is prepared by synthesizing line‐patterned vertically aligned CNT bundles and rolling and transferring them to the silicone elastomer. With the sliding and disconnection of the overlapped CNTs, the strain sensor performs excellently with a broad sensing range (≥145% strain), ultrahigh sensitivity (gauge factor of 42 300 at a strain of 125–145%), high repeatability, and durability. The performance of the sensor is also tunable by controlling the overlapped area of CNT bundles. Detailed mechanisms of the sensor and its applications in human motion detection are also further investigated. With the novel structure and mechanism, the sensor can detect a wide range of strains with high sensitivity, demonstrating the potential for numerous applications including wearable healthcare devices.  相似文献   

6.
Achieving highly accurate responses to external stimuli during human motion is a considerable challenge for wearable devices. The present study leverages the intrinsically high surface‐to‐volume ratio as well as the mechanical robustness of nanostructures for obtaining highly‐sensitive detection of motion. To do so, highly‐aligned nanowires covering a large area were prepared by capillarity‐based mechanism. The nanowires exhibit a strain sensor with excellent gauge factor (≈35.8), capable of high responses to various subtle external stimuli (≤200 µm deformation). The wearable strain sensor exhibits also a rapid response rate (≈230 ms), mechanical stability (1000 cycles) and reproducibility, low hysteresis (<8.1%), and low power consumption (<35 µW). Moreover, it achieves a gauge factor almost five times that of microwire‐based sensors. The nanowire‐based strain sensor can be used to monitor and discriminate subtle movements of fingers, wrist, and throat swallowing accurately, enabling such movements to be integrated further into a miniaturized analyzer to create a wearable motion monitoring system for mobile healthcare.  相似文献   

7.
High sensitivity and high stretchability are two conflicting characteristics that are difficult to achieve simultaneously in elastic strain sensors. A highly sensitive and stretchable strain sensor comprising a microstructured metal nanowire (mNW)/elastomer composite film is presented. The surface structure is easily prepared by combining an mNW coating and soft‐lithographic replication processes in a simple and reproducible manner. The densely packed microprism‐array architecture of the composite film leads to a large morphological change in the mNW percolation network by efficiently concentrating the strain in the valley regions upon stretching. Meanwhile, the percolation network comprising mNWs with a high aspect ratio is stable enough to prevent electrical failure, even under high strains. This enables the sensor to simultaneously satisfy high sensitivity (gauge factor ≈81 at >130% strain) and high stretchability (150%) while ensuring long‐term reliability (10 000 cycles at 150% strain). The sensor can also detect strain induced by bending and pressure, thus demonstrating its potential as a versatile sensing tool. The sensor is successfully utilized to monitor a wide range of human motions in real time. Furthermore, the unique sensing mechanism is easily extended to detect more complex multiaxial strains by optimizing the surface morphology of the device.  相似文献   

8.
Flexible and environment-responsive materials are essential for a large number of applications from artificial skin to wearable devices. The present study develops a flexible, ultra-low cost conductive hybrid elastomer(CHE), which possesses high responsive capabilities to stress/strain and humidity. CHE was composed of polydimethylsiloxane(PDMS) and starch hydrogel(SH), enabling great elasticity(56 kPa),high conductivity(10~(-2)S/m) and high sensitivity to external stimuli(gauge factor of CHE under stress and strain are 0.71 and 2.22, respectively, and sensitivity to humidity is 1.2 × 10~(-6)S/m per RH%). These properties render CHE a promising candidate for artificial skin and wearable electronics applications of continuously monitoring environmental information.  相似文献   

9.
The use of graphene for strain sensors has attracted enormous attention due to its prominent mechanical and electrical properties. In this paper, we report on the preparation and characterization of a novel type of strain sensor based on graphene composite films with layered configuration. Highly reliable and sensitive composite films strain sensors based on graphene were produced from solution processed graphene flakes by spray coating method. The layered strain sensor which could sustain a large tensile deformation (25% strain) demonstrated high sensitivity to mechanical strain with gauge factors of 6–35. And the sensitivity of this type of strain sensors can be tuned over a relatively wide range of values by adjusting the deposition parameters. What’s more, the layered composite films are more durable compared with the fragile pure graphene films. In addition the main mechanisms are investigated, resulting in theoretical models which predict very well the observed behavior.  相似文献   

10.

The demand for high-performance multifunctional wearable devices drives the rapid development of sensors with flexibility, sensitivity and easy preparation. Here, we report an efficient preparation method to fabricate a wearable strain and pressure sensor based on porous graphene paper (PGP), which is prepared by polymethylmethacrylate (PMMA) microsphere as a template. The prepared PGP-based strain and pressure sensor can detect multi-dimensional deformation and shows good flexibility even after more than 1000 s of repeated deformation cycles, while the rapid response time can be up to approximately 60 ms. Moreover, the obtained PGP-based sensor exhibits a good sensitivity that the gauge factor (GF) is up to 77 when the strain is in the range of 4–8%, much higher than other graphene materials. Importantly, the porous microstructure created by the PMMA microsphere in the PGP plays a vital role in the good comprehensive performance of the PGP-based sensor. The device shows potential applications in smart wearable devices to detect or monitor the posture and movement information of human beings.

  相似文献   

11.
Stretchable and wearable sensor technology has attracted significant interests and created high technological impact on portable healthcare and smart human–machine interfaces. Wearable electromechanical systems are an important part of this technology that has recently witnessed tremendous progress toward high‐performance devices for commercialization. Over the past few years, great attention has been paid to simultaneously enhance the sensitivity and stretchability of the electromechanical sensors toward high sensitivity, ultra‐stretchability, low power consumption or self‐power functionalities, miniaturisation as well as simplicity in design and fabrication. This work presents state‐of‐the‐art advanced materials and rational designs of electromechanical sensors for wearable applications. Advances in various sensing concepts and structural designs for intrinsic stretchable conductive materials as well as advanced rational platforms are discussed. In addition, the practical applications and challenges in the development of stretchable electromechanical sensors are briefly mentioned and highlighted.  相似文献   

12.
Flexible and wearable electronics are attracting wide attention due to their potential applications in wearable human health monitoring and care systems. Carbon materials have combined superiorities such as good electrical conductivity, intrinsic and structural flexibility, light weight, high chemical and thermal stability, ease of chemical functionalization, as well as potential mass production, enabling them to be promising candidate materials for flexible and wearable electronics. Consequently, great efforts are devoted to the controlled fabrication of carbon materials with rationally designed structures for applications in next‐generation electronics. Herein, the latest advances in the rational design and controlled fabrication of carbon materials toward applications in flexible and wearable electronics are reviewed. Various carbon materials (carbon nanotubes, graphene, natural‐biomaterial‐derived carbon, etc.) with controlled micro/nanostructures and designed macroscopic morphologies for high‐performance flexible electronics are introduced. The fabrication strategies, working mechanism, performance, and applications of carbon‐based flexible devices are reviewed and discussed, including strain/pressure sensors, temperature/humidity sensors, electrochemical sensors, flexible conductive electrodes/wires, and flexible power devices. Furthermore, the integration of multiple devices toward multifunctional wearable systems is briefly reviewed. Finally, the existing challenges and future opportunities in this field are summarized.  相似文献   

13.
The current percolation in polymer‐sorted semiconducting (7,5) single‐walled carbon nanotube (SWNT) networks, processed from solution, is investigated using a combination of electrical field‐effect measurements, atomic force microscopy (AFM), and conductive AFM (C‐AFM) techniques. From AFM measurements, the nanotube length in the as‐processed (7,5) SWNTs network is found to range from ≈100 to ≈1500 nm, with a SWNT surface density well above the percolation threshold and a maximum surface coverage ≈58%. Analysis of the field‐effect charge transport measurements in the SWNT network using a 2D homogeneous random‐network stick‐percolation model yields an exponent coefficient for the transistors OFF currents of 16.3. This value is indicative of an almost ideal random network containing only a small concentration of metallic SWNTs. Complementary C‐AFM measurements on the other hand enable visualization of current percolation pathways in the xy plane and reveal the isotropic nature of the as‐spun (7,5) SWNT networks. This work demonstrates the tremendous potential of combining advanced scanning probe techniques with field‐effect charge transport measurements for quantification of key network parameters including current percolation, metallic nanotubes content, surface coverage, and degree of SWNT alignment. Most importantly, the proposed approach is general and applicable to other nanoscale networks, including metallic nanowires as well as hybrid nanocomposites.  相似文献   

14.
Fiber‐shaped stretchable strain sensors with small testing areas can be directly woven into textiles. This paves the way for the design of integrated wearable devices capable of obtaining real‐time mechanical feedback for various applications. However, for a simple fiber that undergoes uniform strain distribution during deformation, it is still a big challenge to obtain high sensitivity. Herein, a new strategy, surface strain redistribution, is reported to significantly enhance the sensitivity of fiber‐shaped stretchable strain sensors. A new method of transient thermal curing is used to achieve the large‐scale fabrication of modified elastic microfibers with intrinsic microbeads. The proposed strategy is independent of the active materials utilized and can be universally applied for various active materials. The strategy used here will shift the vision of the sensitivity enhancement method from the active materials design to the mechanical design of the elastic substrate, and the proposed strategy can also be applied to nonfiber‐shaped stretchable strain sensors.  相似文献   

15.
Recently, stretchable electronics have been highly desirable in the Internet of Things and electronic skins. Herein, an innovative and cost‐efficient strategy is demonstrated to fabricate highly sensitive, stretchable, and conductive strain‐sensing platforms inspired by the geometries of a spiders slit organ and a lobsters shell. The electrically conductive composites are fabricated via embedding the 3D percolation networks of fragmentized graphene sponges (FGS) in poly(styrene‐block‐butadiene‐block‐styrene) (SBS) matrix, followed by an iterative process of silver precursor absorption and reduction. The slit‐ and scale‐like structures and hybrid conductive blocks of FGS and Ag nanoparticles (NPs) provide the obtained FGS–Ag‐NP‐embedded composites with superior electrical conductivity of 1521 S cm?1, high break elongation of 680%, a wide sensing range of up to 120% strain, high sensitivity of ≈107 at a strain of 120%, fast response time of ≈20 ms, as well as excellent reliability and stability of 2000 cycles. This huge stretchability and sensitivity is attributed to the combination of high stretchability of SBS and the binary synergistic effects of designed FGS architectures and Ag NPs. Moreover, the FGS/SBS/Ag composites can be employed as wearable sensors to detect the modes of finger motions successfully, and patterned conductive interconnects for flexible arrays of light‐emitting diodes.  相似文献   

16.
Wool keratin (WK) consists of a large number of α‐helices, which are just like many molecular‐scale springs. Herein, the construction of 3D WK molecular spring networks are reported by cross‐linking individual WK molecules via a Michael addition reaction. The as‐prepared springs display a superior recovery capability with unusual nonlinear elasticity, very low dissipative energy, and turntable elastic constant achieved by adjusting the chemical crosslinking density of WK networks. Owing to these unique characteristics, the 3D WK networks based flexible strain sensors reveal a high sensitivity, broad sensing ranges, and extremely long and stable performance. While normal highly sensible strain sensors, obtained by highly sophisticated surface or bulk patterning, often exhibit a relatively narrow range of measurements and limited life cycles. Such the WK mediated sensing materials have widespread applications in wearable electronics, such as detection and tracking of different human motions, and even discern voice during speaking.  相似文献   

17.
A facile approach is proposed for superior conformation and adhesion of wearable sensors to dry and wet skin. Bioinspired skin‐adhesive films are composed of elastomeric microfibers decorated with conformal and mushroom‐shaped vinylsiloxane tips. Strong skin adhesion is achieved by crosslinking the viscous vinylsiloxane tips directly on the skin surface. Furthermore, composite microfibrillar adhesive films possess a high adhesion strength of 18 kPa due to the excellent shape adaptation of the vinylsiloxane tips to the multiscale roughness of the skin. As a utility of the skin‐adhesive films in wearable‐device applications, they are integrated with wearable strain sensors for respiratory and heart‐rate monitoring. The signal‐to‐noise ratio of the strain sensor is significantly improved to 59.7 because of the considerable signal amplification of microfibrillar skin‐adhesive films.  相似文献   

18.
Organic semiconductor gas sensor is one of the promising candidates of room temperature operated gas sensors with high selectivity. However, for a long time the performance of organic semiconductor sensors, especially for the detection of oxidizing gases, is far behind that of the traditional metal oxide gas sensors. Although intensive attempts have been made to address the problem, the performance and the understanding of the sensing mechanism are still far from sufficient. Herein, an ultrasensitive organic semiconductor NO2 sensor based on 6,13‐bis(triisopropylsilylethynyl)­pentacene (TIPS‐petacene) is reported. The device achieves a sensitivity over 1000%/ppm and fast response/recovery, together with a low limit of detection (LOD) of 20 ppb, all of which reach the level of metal oxide sensors. After a comprehensive analysis on the morphology and electrical properties of the organic films, it is revealed that the ultrahigh performance is largely related to the film charge transport ability, which was less concerned in the studies previously. And the combination of efficient charge transport and low original charge carrier concentration is demonstrated to be an effective access to obtain high performance organic semiconductor gas sensors.  相似文献   

19.
The development of pressure sensors is crucial for the implementation of electronic skins and for health monitoring integrated into novel wearable devices. Tremendous effort is devoted toward improving their sensitivity, e.g., by employing microstructured electrodes or active materials through cumbersome processes. Here, a radically new type of piezoresistive pressure sensor based on a millefeuille‐like architecture of reduced graphene oxide (rGO) intercalated by covalently tethered molecular pillars holding on‐demand mechanical properties are fabricated. By applying a tiny pressure to the multilayer structure, the electron tunnelling ruling the charge transport between successive rGO sheets yields a colossal decrease in the material's electrical resistance. Significantly, the intrinsic rigidity of the molecular pillars employed enables the fine‐tuning of the sensor's sensitivity, reaching sensitivities as high as 0.82 kPa?1 in the low pressure region (0–0.6 kPa), with short response times (≈24 ms) and detection limit (7 Pa). The pressure sensors enable efficient heartbeat monitoring and can be easily transformed into a matrix capable of providing a 3D map of the pressure exerted by different objects.  相似文献   

20.
Building humidity sensors possessing the features of diverse‐configuration compatibility, and capability of measurement of spatial and temporal humidity gradients is of great interest for highly integrated electronics and wearable monitoring systems. Herein, a visual sensing approach based on fluorescent imaging is presented, by assembling aggregation‐induced‐emission (AIE)‐active molecular rotors into a moisture‐captured network; the resulting AIE humidity sensors are compatible with diverse applications, having tunable geometries and desirable architectures. The invisible information of relative humidity (RH) is transformed into different fluorescence colors that enable direct observation by the naked eyes based on the twisted intramolecular charge‐transfer effect of the AIE‐active molecular rotors. The resulting AIE humidity sensors show excellent performance in terms of good sensitivity, precise quantitative measurement, high spatial–temporal resolution, and fast response/recovery time. Their multiscale applications, such as regional environmental RH detection, internal humidity mapping, and sensitive human‐body humidity sensing are demonstrated. The proposed humidity visualization strategy may provide a new insight to develop humidity sensors for various applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号