首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the last few decades, advances and breakthroughs of carbon materials have been witnessed in both scientific fundamentals and potential applications. The combination of carbon materials with traditional silicon semiconductors to fabricate solar cells has been a promising field of carbon science. The power conversion efficiency has reached 15–17% with an astonishing speed, and the diversity of systems stimulates interest in further research. Here, the historical development and state‐of‐the‐art carbon/silicon heterojunction solar cells are covered. Firstly, the basic concept and mechanism of carbon/silicon solar cells are introduced with a specific focus on solar cells assembled with carbon nanotubes and graphene due to their unique structures and properties. Then, several key technologies with special electrical and optical designs are introduced to improve the cell performance, such as chemical doping, interface passivation, anti‐reflection coatings, and textured surfaces. Finally, potential pathways and opportunities based on the carbon/silicon heterojunction are envisaged. The aspects discussed here may enable researchers to better understand the photovoltaic effect of carbon/silicon heterojunctions and to optimize the design of graphene‐based photodevices for a wide range of applications.  相似文献   

2.
3.
n型层对柔性衬底微晶硅太阳电池特性的影响   总被引:1,自引:0,他引:1  
在不锈钢柔性衬底上采用等离子体化学气相沉积(PECVD)方法制备了不同结构的n型硅薄膜,测试了在其上生长的微晶硅太阳电池的电学输出特性.发现太阳电池的开路电压随n型层的硅烷浓度线形变化,短路电流密度则存在一个最优值,这与n型层引起的本征层中的孵化层和结构演变有关.将优化后的n型层应用于不锈钢柔性衬底的非晶硅/微晶硅叠层...  相似文献   

4.
5.
Paintable carbon electrode‐based perovskite solar cells (PSCs) are of particular interest due to their material and fabrication process costs, as well as their moisture stability. However, printing the carbon paste on the perovskite layer limits the quality of the interface between the perovskite layer and carbon electrode. Herein, an attempt to enhance the performance of the paintable carbon‐based PSCs is made using a modified solvent dripping method that involves dripping of the carbon nanotubes (CNTs), which is dispersed in chlorobenzene solution. This method allows CNTs to penetrate into both the perovskite film and carbon electrode, facilitating fast hole transport between the two layers. Furthermore, this method is results in increased open circuit voltage (Voc) and fill factor (FF), providing better contact at the perovskite/carbon interfaces. The best devices made with CNT dripping show 13.57% power conversion efficiency and hysteresis‐free performance.  相似文献   

6.
碳纳米管(CNTs)由于具有独特的一维结构、良好的化学稳定性、优异的电荷传导性能以及独特的光电性能,近些年被广泛应用于太阳能电池材料.综述了CNTs在聚合物太阳能电池、染料敏化太阳能电池以及无机太阳能电池中的应用研究进展.  相似文献   

7.
8.
9.
TiO2作为光阳极薄膜材料,广泛应用于染料敏化太阳电池(DSC)中.在TiO2多孔薄膜中掺碳纳米管,不仅可以加快光生电子在TiO2薄膜内的传输,同时也可以增加电子寿命,从而提高染料敏化太阳电池的效率.本文综述了近年来在TiO2中掺碳纳米管的研究成果,简要介绍了碳纳米管在DSC中的作用;归纳了掺杂于TiO2光阳极的碳纳米...  相似文献   

10.
11.
As one type of emerging photovoltaic cell, dye‐sensitized solar cells (DSSCs) are an attractive potential source of renewable energy due to their eco–friendliness, ease of fabrication, and cost effectiveness. However, in DSSCs, the rarity and high cost of some electrode materials (transparent conducting oxide and platinum) and the inefficient performance caused by slow electron transport, poor light‐harvesting efficiency, and significant charge recombination are critical issues. Recent research has shown that carbon nanotubes (CNTs) are promising candidates to overcome these issues due to their unique electrical, optical, chemical, physical, as well as catalytic properties. This article provides a comprehensive review of the research that has focused on the application of CNTs and their hybrids in transparent conducting electrodes (TCEs), in semiconducting layers, and in counter electrodes of DSSCs. At the end of this review, some important research directions for the future use of CNTs in DSSCs are also provided.  相似文献   

12.
何云龙  沈沪江  王炜  袁慧慧 《材料导报》2018,32(21):3677-3688
柔性太阳能电池具有轻便、可弯曲的优点,可用于可穿戴设备等器件的即时充电,具有广阔的应用前景,受到持续广泛的关注。柔性太阳能电池制备中的关键在于基材以及与之相关的电极材料的制备。本文综述了柔性染料敏化太阳能电池和柔性钙钛矿太阳能电池近几年的发展情况,着重介绍了柔性染料敏化太阳能电池光阳极、对电极以及柔性钙钛矿太阳能电池的底电极和电子传输层。结果发现高温烧结目前仍是制备高效染料敏化太阳能电池光阳极不可避免的方法,而对电极则不受这一限制并且已经有多种材料的效率超过了高温烧结的铂。柔性钙钛矿太阳能电池的研究重点是用其他材料代替底电极中柔性较差的ITO以及高温烧结的电子传输材料TiO2,并且都取得显著成效。在此基础上,展望了柔性染料敏化太阳能电池和柔性钙钛矿太阳能电池未来的发展方向。  相似文献   

13.
14.
In this study, the fabrication of highly efficient and durable flexible inverted perovskite solar cells (PSCs) is reported. Presynthesized, solution‐derived NiOx and ZnO nanoparticles films are employed at room temperature as a hole transport layer (HTL) and electron transport layer (ETL), respectively. The triple cation perovskite films are produced in a single step and for the sake of comparison, ultrasmooth and pinhole‐free absorbing layers are also fabricated using MAPbI3 perovskite. The triple cation perovskite cells exhibit champion power conversion efficiencies (PCEs) of 18.6% with high stabilized power conversion efficiency of 17.7% on rigid glass/indium tin oxide (ITO) substrates (comparing with 16.6% PCE with 16.1% stabilized output efficiency for the flexible polyethylene naphthalate (PEN)/thin film barrier/ITO substrates). More interestingly, the durability of flexible PSC under simulation of operative condition is proved. Over 85% of the maximum stabilized output efficiency is retained after 1000 h aging employing a thin MAPbI3 perovskite (over 90% after 500 h with a thick triple cation perovskite). This result is comparable to a similar state of the art rigid PSC and represents a breakthrough in the stability of flexible PSC using ETLs and HTLs compatible with roll to roll production speed, thanks to their room temperature processing.  相似文献   

15.
16.
17.
从废弃的太阳能电池片中回收多晶硅原材料对于环境保护和材料的循环再利用具有重要意义。本文研究了用化学溶解和超声清洗回收电池片的最佳条件。分别对实验样品进行EDS、SEM、XPS分析, 得出结论: 电池片与质量分数为10%的氢氧化钠溶液反应18 min完全去除铝电极, 且硅晶片的损失率较小; 将完全去除铝电极的电池片在40 kHz超声清洗20 min后银电极完全剥落; 电池片与40%氢氟酸溶液反应10 min可以去除氮化硅膜。本研究对质量为8.9068 g的单片电池片进行了定量分析, 除去的铝电极质量为1.1102 g, 回收得到了0.0766 g的银电极和7.7169 g的硅晶片。  相似文献   

18.
19.
20.
In a modern electronics system, charge-coupled devices and data storage devices are the two most indispensable components. Although there has been rapid and independent progress in their development during the last three decades, a cofunctionality of both sensing and memory at single-unit level is yet premature for flexible electronics. For wearable electronics that work in ultralow power conditions and involve strains, conventional sensing-and-memory systems suffer from low sensitivity and are not able to directly transform sensed information into sufficient memory. Here, a new transformative device is demonstrated, which is called “sen-memory”, that exhibits the dual functionality of sensing and memory in a monolithic integrated circuit. The active channel of the device is formed by a carbon nanotube thin film and the floating gate is formed by a controllably oxidized aluminum nanoparticle array for electrical- and optical-programming. The device exhibits a high on–off current ratio of ≈106, a long-term retention of ≈108 s, and durable flexibility at a bending strain of 0.4%. It is shown that the device senses a photogenerated pattern in seconds at zero bias and memorizes an image for a couple of years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号