首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
cis-Dichloroethene (DCE) and vinyl chloride (VC) often accumulate in contaminated aquifers in which tetrachloroethene (PCE) or trichloroethene (TCE) undergo reductive dechlorination. "Dehalococcoides ethenogenes" strain 195 is the first isolate capable of dechlorinating chloroethenes past cis-DCE. Strain 195 could utilize commercially synthesized cis-DCE as an electron acceptor, but doses greater than 0.2 mmol/L were inhibitory, especially to PCE utilization. To test whether the cis-DCE itself was toxic, or whether the toxicity was due to impurities in the commercial preparation (97% nominal purity), we produced cis-DCE biologically from PCE using a Desulfitobacterium sp. culture. The biogenic cis-DCE was readily utilized at high concentrations by strain 195 indicating that cis-DCE was not intrinsically inhibitory. Analysis of the commercially synthesized cis-DCE by GC/mass spectrometry indicated the presence of approximately 0.4% mol/mol chloroform. Chloroform was found to be inhibitory to chloroethene utilization by strain 195 and at least partially accounts for the inhibitory activity of the synthetic cis-DCE. VC, a human carcinogen that accumulates to a large extent in cultures of strain 195, was not utilized as a growth substrate, and cultures inoculated into medium with VC required a growth substrate, such as PCE, for substantial VC dechlorination. However, high concentrations of PCE or TCE inhibited VC dechlorination. Use of a hexadecane phase to keep the aqueous PCE concentration low in cultures allowed simultaneous utilization of PCE and VC. At contaminated sites in which "D. ethenogenes" or similar organisms are present, biogenic cis-DCE should be readily dechlorinated, chloroform as a co-contaminant may be inhibitory, and concentrations of PCE and TCE, except perhaps those near the source zone, should allow substantial VC dechlorination.  相似文献   

2.
A laboratory microcosm study and a pilot scale field test were conducted to evaluate biostimulation and bioaugmentation to dechlorinate tetrachloroethene (PCE) to ethene at Kelly Air Force Base. The site groundwater contained about 1 mg/L of PCE and lower amounts of trichloroethene (TCE) and cis-1,2-dichloroethene (cDCE). Laboratory microcosms inoculated with soil and groundwater from the site exhibited partial dechlorination of TCE to cDCE when amended with lactate or methanol. Following the addition of a dechlorinating enrichment culture, KB-1, the chlorinated ethenes in the microcosms were completely converted to ethene. The KB-1 culture is a natural dechlorinating microbial consortium that contains phylogenetic relatives of Dehalococcoides ethenogenes. The ability of KB-1 to stimulate biodegradation of chlorinated ethenes in situ was explored using a closed loop recirculation cell with a pore volume of approximately 64,000 L The pilot test area (PTA) groundwater was first amended with methanol and acetate to establish reducing conditions. Under these conditions, dechlorination of PCE to cDCE was observed. Thirteen liters of the KB-1 culture were then injected into the subsurface. Within 200 days, the concentrations of PCE, TCE, and cis-1,2-DCE within the PTA were all below 5 microg/L, and ethene production accounted for the observed mass loss. The maximum rates of dechlorination estimated from field date were rapid (half-lives of a few hours). Throughout the pilot test period, groundwater samples were assayed for the presence of Dehalococcoides using both a Dehalococcoides-specific PCR assay and 16S rDNA sequence information. The sequences detected in the PTA after bioaugmentation were specific to the Dehalococcoides species in the KB-1 culture. These sequences were observed to progressively increase in abundance and spread downgradient within the PTA. These results confirm that organisms in the KB-1 culture populated the PTA aquifer and contributed to the stimulation of dechlorination beyond cDCE to ethene.  相似文献   

3.
Kinetic studies reported here have shown that acetylene is a potent reversible inhibitor of reductive dehalogenation of trichloroethene (TCE) and vinyl chloride (VC) by a mixed dehalogenating anaerobic culture. The mixed culture was enriched from a contaminated site in Corvallis, OR, and exhibited methanogenic, acetogenic, and reductive dehalogenation activities. The H2-fed culture transformed TCE to ethene via cis-dichloroethene (c-DCE) and VC as intermediates. Batch kinetic studies showed acetylene reversibly inhibited reduction of both TCE and VC, and the levels of inhibition were strongly dependent on acetylene concentrations in both cases. Acetylene concentrations of 192 and 12 microM, respectively, were required to achieve 90% inhibition in rates of TCE and VC transformation at an aqueous concentration of 400 microM. Acetylene also inhibited methane production (90% inhibition at 48 microM) but did not inhibit H2-dependent acetate production. Mass balances conducted during the studies of VC inhibition showed that acetogenesis, VC transformation to ethene, and methane production were responsible for 52%, 47%, and 1% of the H2 consumption, respectively. The results indicate that halorespiration is the dominant process responsible for VC and TCE transformation and that dehalorespiring organisms are the target of acetylene inhibition. Acetylene has potential use as a reversible inhibitor to probe the biological activities of reductive dechlorination and methanogenesis. It can be added to inhibit reactions and then removed to permit reactions to proceed. Thus, it can be a powerful tool for investigating intrinsic and enhanced anaerobic remediation of chloroethenes at contaminated sites. The results also suggest that acetylene produced abiotically by reactions of chlorinated ethenes with zero-valent iron could inhibit the biological transformation of VC to ethene.  相似文献   

4.
The reductive dechlorination of tetrachloroethene (PCE) and trichloroethene (TCE) at contaminated sites often results in the accumulation of cis-1,2-dichloroethene (DCE) and vinyl chloride (VC), rather than the nonhazardous end product ethene. This accumulation may be caused by the absence of appropriate microorganisms, insufficient supply of donor substrate, or reaction kinetic limitations. Here, we address the issue of reaction kinetic limitations by investigating the effect of limiting substrate concentrations (electron donor and acceptor) on DCE and VC dechlorination kinetics and microorganism growth by bacterium VS. For this, a model based on Monod kinetics, but also accounting for competition between electron acceptors and the effect of low electron donor and acceptor concentrations (dual-substrate kinetics), was examined. Competitive coefficients for VC (7.8 +/- 1.5 microM) and DCE (3.6 +/- 1.1 microM) were obtained and included in the model. The half velocity coefficient for hydrogen, the electron donor, was experimentally determined (7 +/- 2 nM) through investigating dechlorination over different substrate concentrations. This complete model was then used, along with experimental data, to determine substrate concentrations at which the dechlorinating microorganisms would be in net decay. Notably, the model indicates net decay will result if the total electron acceptor concentration (DCE plus VC) is below 0.7 microM, regardless of electron donor levels. The ability to achieve sustainable bioremediation to acceptable levels can be greatly influenced by this threshold level.  相似文献   

5.
Stable carbon isotope fractionation during the reductive dechlorination of chloroethenes by two bacterial strains that dechlorinate to ethene, Dehalococcoides ethenogenes 195 and Dehalococcoides sp. strain BAV1 as well as Sulfurospirillum multivorans and Dehalobacter restrictus strain PER-K23, isolates that do not dechlorinate past DCE, are reported. Fractionation by a Dehalococcoides-containing enrichment culture is also measured for comparison to the isolates. All data adequately fit the Rayleigh model and results are presented as enrichment factors. For strain 195, the measured enrichment factors were -9.6 +/- 0.4, -21.1 +/- 1.8, and -5.8 +/- 0.5 when degrading TCE, cDCE, and 1,1-DCE, respectively. Strain BAV1 exhibited enrichment factors of -16.9 +/- 1.4, -8.4 +/- 0.3, -21.4 +/- 0.9, and -24.0 +/- 2.0 for cDCE, 1,1-DCE, tDCE, and VC, respectively. The surprisingly large differences in enrichment factors caused by individual reductases (RDases) reducing different chloroethenes is likely the result of chemical structure differences among the chloroethenes. For TCE reduction, S. multivorans and D. restrictus strain PER-K23 exhibited enrichment factors of -16.4 +/- 1.5 and -3.3 +/- 0.3, respectively. While all of the organisms studied here utilize RDases that require corrinoid cofactors, the biotic TCE enrichment factors varied widely from those reported for the abiotic cobalamin-catalyzed reaction, indicating that additional factors affect the extent of fractionation in these biological systems. The enrichment factors measured for the Dehalococcoides-containing enrichment culture did not match well with those from any of the isolates, demonstrating the inherent difficulties in predicting fractionation factors of undefined communities. Although compound-specific isotope fractionation is a powerful tool for evaluating the progress of in situ bioremediation in the field, given the wide range of enrichment factors associated with functionally similar and phylogenetically diverse organisms, caution must be exercised when applying enrichment factors for the interpretation of dechlorination data.  相似文献   

6.
Bioaugmentation with cultures containing Dehalococcoides strains that dechlorinate cis-1,2-dichloroethene (cDCE) to ethene is often recommended at sites where indigenous populations dechlorinate tetrachloroethene (PCE) to cDCE. In these cases, Dehalococcoides populations may have to compete with other dehalorespirers for chlorinated ethenes and/or electron donors. A continuous-flow stirred tank reactor model was used to describe the substrate interactions in three conceptual models of competition between PCE-respiring populations under natural attenuation and engineered bioremediation scenarios. Model simulations were used to evaluate the effects of other chlorinated ethene respirers on substrate utilization by, and growth of, a Dehalococcoides strain (Dhc. ethenogenes strain 195) and identify the key factors influencing the outcome of competition among different dehalorespirers. The results suggest that, under natural attenuation conditions, Dhc. ethenogenes is unlikely to be the dominant population if a dehalorespirer that can compete for limiting amounts of reducing equivalents is present. Engineered bioremediation conditions resulted in greater enrichment of Dhc. ethenogenes than of competing dehalorespirers. Under several conditions, Dhc. ethenogenes coexisted with a PCE-to-cDCE (or PCE-to-TCE) dehalorespirer, primarily by functioning as a cDCE- (or TCE)-to-ethene dechlorinating specialist. From a bioremediation standpoint, maintenance of multiple dehalorespiring specialists appears ideal because it may result in the fastest and most extensive chlorinated ethene transformations. Thus, to improve our ability to successfully implement bioremediation, it may be helpful to characterize the indigenous PCE-to-cDCE respiring populations and the nature and distribution of electron donors used by these dehalorespirers at contaminated sites. Further understanding of these interactions requires more accurate information on the kinetics of known dehalorespiring populations.  相似文献   

7.
The ability to inoculate a PCE-NAPL source zone with no prior dechlorinating activity was examined using a near field-scale simulated aquifer. A known mass of PCE was added to establish a source zone, and the groundwater was depleted of oxygen using acetate and lactate prior to culture addition. An active and stable dechlorinating culture was used as an inoculum, and dechlorination activity was observed within 2 weeks following culture transfer. PCE reduction to TCE and cis-DCE was observed initially, and the formation of these compounds was accelerated by the addition of a long-term source of hydrogen (Hydrogen Releasing Compound). cis-DCE was the predominant chlorinated ethene present in the effluent after 225 days of operation, and production of VC and ethene lagged the formation of TCE and cis-OCE. However, dechlorination extent continued to improve over time, and VC eventually became a major product, suggesting that reinoculation was unnecessary. The detection of Dehalococcoides species in the source culture and in the simulated aquifer postinoculation indicated that the metabolic capability to dechlorinate beyond cis-DCE (t = 86 days and t = 245 days) was present. Elevated levels of TCE and cis-DCE were present in the source zone, but neither VC nor ethene were detected in the vicinity of NAPL. The results of this research indicated that adding dechlorinating cultures may be useful in the application of source zone bioremediation but that dechlorination beyond cis-DCE may be limited to regions downgradient of the source zone.  相似文献   

8.
The population dynamics of a mixed microbial culture dechlorinating trichloroethene (TCE), cis-1,2-dichloroethene (cDCE), 1,2-dichloroethane (1,2-DCA), and vinyl chloride (VC) to ethene were studied. Quantitative PCR revealed that Dehalococcoides, Geobacter, Sporomusa, Spirochaetes, and Methanomicrobiales phylotypes grew in short-term experiments. Both Geobacter and Dehalococcoides populations grew during TCE dechlorination to cDCE, but only Dehalococcoides populations grew during further dechlorination to ethene. The cell yields for Dehalococcoides determined in this study were similar on an electron equivalent basis regardless of the chlorinated compound transformed: (0.9+/-0.3) x 10(8)16S rRNA gene copies/microelectron equivalent (microeeq) ethene produced during cDCE dechlorination, (1.5 +/-0.3) x 10(8) copies/microeeq ethene produced during VC dechlorination, and (1.6+/-0.8) x 10(8) copies/ u,eeq ethene produced during 1,2-DCA dihaloelimination. The yield for the Geobacter population on TCE was estimated to be (1+/-0.5) x 10(8) copies/microeeq cDCE produced. Calculations showed that the Geobacter population was likely responsible for approximately 80% of the TCE dechlorinated to cDCE in this experiment. Acetogenesis by a Sporomusa population was the main competition to dechlorination for reducing equivalents. Sporomusa did not transform any chlorinated substrates tested, but was capable of converting methanol to acetate and hydrogen for dechlorination. Understanding the functions of various populations in mixed communities may explain why Dehalococcoides spp. are active at some sites and not others, and may also assist in optimizing the growth of bioaugmentation cultures, both in the laboratory and in the field.  相似文献   

9.
A sediment column study was carried out to demonstrate the bioremediation of chloroethene- and nickel-contaminated sediment in a single anaerobic step under sulfate-reducing conditions. Four columns (one untreated control column and three experimental columns) with sediment from a chloroethene- and nickel-contaminated site were investigated for 1 year applying different treatments. By stimulating the activity of sulfate-reducing bacteria by the addition of sulfate as supplementary electron acceptor, complex anaerobic communities were maintained with lactate as electron donor (with or without methanol), which achieved complete dehalogenation of tetra- and trichloroethenes (PCE and TCE) to ethene and ethane. A few weeks after sulfate addition, production of sulfide increased, indicating an increasing activity of sulfate-reducing bacteria. The nickel concentration in the effluent of one nickel-spiked column was greatly reduced, likely due to the enhanced sulfide production, causing precipitation of nickel sulfide. At the end of the study, 94% of the initial amount of nickel added to that column was recovered in the sediment As compared to the untreated (nonspiked) control column, all chloroethene-spiked columns ladditions of PCE and TCE) showed a permanent release of small chloride ion quantities (approximately 0.5-0.7 mM chloride), which were detected in the effluents a few weeks after sulfide production was observed for the first time. The formation of ethene and ethane as final products after dechlorination of PCE and TCE was detected in some effluents and in some gas phases of the columns. Other metabolites or intermediates (such as DCE isomers) were only detected sporadically in negligible quantities. The results of this study demonstrated thatmicrobial activity stimulated under sulfate-reducing conditions can have a beneficial effect on both the precipitation of heavy metals and the complete dechlorination of organochlorines. The strongly negative redox potential created by the activity of sulfate-reducing bacteria may be one factor responsible for stimulating the activity of the dehalogenating bacteria in the test columns.  相似文献   

10.
A model was developed to predict the concentrations of chlorinated ethenes and ethene during sequential reductive dechlorination of tetrachloroethene (PCE) from stable carbon isotope values using Rayleigh model principles and specified isotopic enrichment factors for each step of dechlorination. The model was tested using three separate datasets of concentration and isotope values measured during three experiments involving the degradation of PCE to vinyl chloride (VC), trichloroethene (TCE) to ethene, and cis-1,2-dichloroethene (cDCE) to ethene. The model was then coupled to a parameter estimation method to estimate values for the isotopic enrichment factors of TCE, cDCE, and VC when they are intermediates in the dechlorination to ethene. The enrichment factors estimated for TCE and cDCE when they were intermediates in biodegradation experiments were close to or within the published range of enrichment factors determined from experiments where TCE or cDCE were the initial substrates. In contrast, the enrichment factors determined by parameter estimation for experiments in which VC was an intermediate in biodegradation experiments were consistently more negative (by approximately 10 per thousandth) than the most negative published enrichment factor determined from experiments where VC was the initial substrate. This finding suggests that the range of enrichment factors for VC dechlorination may not be as narrow as previously suggested (-21.5 per thousandth to -26.6 per thousandth) and that fractionation during VC dechlorination when VC is an intermediate compound may be significantly larger than when VC is the initial substrate. These findings have important implications both for the current practice of extrapolating laboratory-derived isotopic enrichment factors to quantify biodegradation of chlorinated ethenes in the field and for understanding the details of enzymatic reductive dechlorination.  相似文献   

11.
Stable carbon isotope analysis of chlorinated ethenes and ethene was performed at a site contaminated with trichloroethene (TCE), a dense non-aqueous phase liquid (DNAPL). The site is located in fractured bedrock and had variable groundwater hydraulic gradients during the study due to a local excavation project. Previous attempts to biostimulate a pilot treatment area at the site resulted in the production of cis-1,2-dichloroethene (cis-DCE), the first product of reductive dechlorination of TCE. Cis-DCE concentrations accumulated however, and there was no appreciable production of the breakdown products from further reductive dechlorination, vinyl chloride (VC) and ethene (ETH). Consequently, the pilot treatment area was bioaugmented with a culture of KB-1, a natural microbial consortium known to completely reduce TCE to nontoxic ETH. Due to ongoing dissolution of TCE from DNAPL in the fractured bedrock, and to variable hydraulic gradients, concentration profiles of dissolved TCE and its degradation products cis-DCE, VC, and ETH could not convincingly confirm biodegradation of the chlorinated ethenes. Isotopic analysis of cis-DCE and VC, however, demonstrated that biodegradation was occurring in the pilot treatment area. The isotope values of cis-DCE and VC became significantly more enriched in 13C over the last two sampling dates (in one well from -17.6%o to -12.8%o and from -22.5%o to -18.2%o for cis-DCE and VC, respectively). Quantification of the extent of biodegradation in the pilot treatment area using the Rayleigh model indicated that, depending on the well, between 21.3% and 40.7% of the decrease in cis-DCE and between 15.2% and 36.7% of the decrease in VC concentrations can be attributed to the effects of biodegradation during this time period. Within each well, the isotope profile of TCE remained relatively constant due to the continuous input of undegraded TCE due to DNAPL dissolution.  相似文献   

12.
1-Chloro-1-fluoroethene (1,1-CFE) was studied as a reactive tracer to quantify the anaerobic transformation of vinyl chloride (VC). Batch kinetic studies of 1,1-CFE and VC transformation were performed with an enrichment culture obtained from the Evanite site in Corvallis, OR. The culture is capable of completely transforming trichloroethene (TCE) through cis-dichloroethene (c-DCE) and VC to ethene. The culture also transforms fluorinated analogues, such as trichlorofluoroethene (TCFE), to fluoroethene (FE) as a final product. The transformation sequence of the fluorinated analogue was correlated with that achieved for the chlorinated ethene with the same degree of chloride substitution. For example, the production of 1,1-CFE, the major CFE isomer formed from TCFE transformation, was correlated with the production of VC from TCE transformation. Since the 1,1-CFE and its product, FE, have a distinct analytical signature, 1,1-CFE may be used as a reactive in situ tracer to evaluate the VC transformation potential. The half-saturated constants (K(S)) of VC and 1,1-CFE were 63 and 87 microM, respectively, while similar maximum utilization rates (kmaxX) of 334 and 350 microM/d were achieved. Acetylene inhibited both VC and 1,1-CFE transformation. A competitive inhibition model with the independently measured K(S) values used as the inhibition constants predicted rates of transformation of both VC and 1,1-CFE when both compounds were present. 1,1-CFE transformation was also tested with three different cultures. With all the cultures, 1,1-CFE transformation was associated with VC transformation to ethene, and the rates of transformation were comparable. The results demonstrated that 1,1-CFE was a good reactive surrogate for evaluating the rates of VC transformation.  相似文献   

13.
A microbial culture derived from a landfill site in Dover, DE consistently reduced trichloroethene (TCE) to ethene through 1,1-dichloroethene (DCE) as a dominant intermediate in the presence of ampicillin. A constant 1,1-DCE-to-cis-DCE ratio of 2.4 +/- 0.3 was observed for more than two years, while trans-DCE was never detected. Without ampicillin, however, TCE was reduced to ethene almost exclusively through cis-DCE, suggesting that the culture contained at leasttwo TCE-dechlorinating populations. Two subcultures, which were established using 1,1-DCE or vinyl chloride as an electron acceptor, exhibited the same 1,1-DCE-to-cis-DCE ratio when TCE was introduced. PCR amplification of 16S rRNA gene followed by sequencing and DGGE analysis indicate that these (sub)cultures contained a Dehalococcoides population(s). TCE dechlorination assays with crude cell extract showed a DCE distribution pattern similar to that with whole cells. The enzyme involved in 1,1-DCE formation was likely a cobalt corrinoid enzyme, as suggested by the inhibitory effect of CH3I and photoreversibility of the inhibition. This study provides a possible biological mechanism forthe occurrence of 1,1-DCE in TCE-contaminated sites.  相似文献   

14.
While most sites and all characterized PCE and TCE dechlorinating anaerobic bacteria produce cis-DCE as the major DCE isomer, significant amounts of trans-DCE are found in the environment. We have obtained microcosms from some sites and enrichment cultures that produce more trans-DCE than cis-DCE. These cultures reductively dechlorinated PCE and TCE to trans-DCE and cis-DCE simultaneously and in a ratio of 3(+/-0.5):1 that was stable through serial transfers with a variety of electron donors and occurred in both methanogenic and nonmethanogenic enrichments. Two sediment-free, nonmethanogenic enrichment cultures produced trans-DCE at rates of up to 2.5 micromol L(-1) day(-1). Dehalococcoides populations were detected in both trans-DCE producing cultures by their 16S rRNA gene sequences, and trans-DCE was produced in the presence of ampicillin. Because trans-DCE can be the major product from PCE and TCE microbial dechlorination, high fractions of trans-DCE at chloroethene-contaminated sites are not necessarily from source contamination.  相似文献   

15.
16.
Dehalococcoides ethenogenes strain 195 dechlorinates tetrachloroethene to vinyl chloride and ethene, and its genome has been found to contain up to 17 putative dehalogenase gene homologues, suggesting diverse dehalogenation ability. We amended pure or mixed cultures containing D. ethenogenes strain 195 with 1,2,3,4-tetrachlorodibenzo-p-dioxin, 2,3,7,8-tetrachlorodibenzo-p-dioxin, 2,3-dichlorodibenzo-p-dioxin, 1,2,3,4-tetrachlorodibenzofuran, 2,3,4,5,6-pentachlorobiphenyl, 1,2,3,4-tetrachloronaphthalene, various chlorobenzenes, or a mixture of 2-, 3-, and 4-chlorophenol to determine the dehalogenation ability. D. ethenogenes strain 195 dechlorinated 1,2,3,4-tetrachlorodibenzo-p-dioxin to a mixture of 1,2,4-trichlorodibenzo-p-dioxin and 1,3-dichlorodibenzo-p-dioxin. 2,3,4,5,6- Pentachlorobiphenyl was dechlorinated to 2,3,4,6- and/or 2,3,5,6-tetrachlorobiphenyl and 2,4,6-trichlorobiphenyl. 1,2,3,4-Tetrachloronaphthalene was dechlorinated primarily to an unidentified dichloronaphthalene congener. The predominant end products from hexachlorobenzene dechlorination were 1,2,3,5-tetrachlorobenzene and 1,3,5-trichlorobenzene. We did not detect dechlorination daughter products from monochlorophenols, 2,3-dichlorodibenzo-p-dioxin or 2,3,7,8- tetrachlorodibenzo-p-dioxin. D. ethenogenes strain 195 has the ability to dechlorinate many different types of chlorinated aromatic compounds, in addition to its known chloroethene respiratory electron acceptors. Remediation of sediments contaminated with aromatic halogenated organic pollutants such as polychlorinated biphenyls and polychlorinated dibenzo-p-dioxins could require billions of dollars in the coming years. Harnessing microorganisms such as Dehalococcoides spp. that detoxify these compounds via removal of halogens may lead to cost-effective biotechnological approaches for remediation.  相似文献   

17.
Mixtures of chlorinated ethenes and ethanes are often found at contaminated sites. In this study, we undertook a systematic investigation of the inhibitory effects of 1,1,1-trichloroethane (1,1,1-TCA) and 1,1-dichloroethane (1,1-DCA) on chlorinated ethene dechlorination in three distinct Dehalococcoides-containing consortia. To focus on inhibition acting directly on the reductive dehalogenases, dechlorination assays used cell-free extracts prepared from cultures actively dechlorinating trichloroethene (TCE) to ethene. The dechlorination assays were initiated with TCE, cis-1,2-dichloroethene (cDCE), or vinyl chloride (VC) as substrates and either 1,1,1-TCA or 1,1-DCA as potential inhibitors. 1,1,1-TCA inhibited VC dechlorination similarly in cell suspension and cell-free extract assays, implicating an effect on the VC reductases associated with the dechlorination of VC to nontoxic ethene. Concentrations of 1,1,1-TCA in the range of 30-270 μg/L reduced VC dechlorination rates by approximately 50% relative to conditions without 1,1,1-TCA. 1,1,1-TCA also inhibited reductive dehalogenases involved in TCE and cDCE dechlorination. In contrast, 1,1-DCA had no pronounced inhibitory effects on chlorinated ethene reductive dehalogenases, indicating that removal of 1,1,1-TCA via reductive dechlorination to 1,1-DCA is a viable strategy to relieve inhibition.  相似文献   

18.
Area 6 at Dover Air Force Base (Dover, DE) has been the location of an in-depth study by the RTDF (Remediation Technologies Development Forum Bioremediation of Chlorinated Solvents Action Team) to evaluate the effectiveness of natural attenuation of chlorinated ethene contamination in groundwater. Compound-specific stable carbon isotope measurements for dissolved PCE and TCE in wells distributed throughout the anaerobic portion of the plume confirm that stable carbon isotope values are isotopically enriched in 13C consistent with the effects of intrinsic biodegradation. During anaerobic microbial reductive dechlorination of chlorinated hydrocarbons, the light (12C) versus heavy isotope (13C) bonds are preferentially degraded, resulting in isotopic enrichment of the residual contaminant in 13C. To our knowledge, this study is the first to provide definitive evidence for reductive dechlorination of chlorinated hydrocarbons at a field site based on the delta13C values of the primary contaminants spilled at the site, PCE and TCE. For TCE, downgradient wells show delta13C values as enriched as -18.0/1000 as compared to delta13C values for TCE in the source zone of -25.0 to -26.0/1000. The most enriched delta13C value on the site was observed at well 236, which also contains the highest concentrations of cis-DCE, VC, and ethene, the daughter products of reductive dechlorination. Stable carbon isotope signatures are used to quantify the relative extent of biodegradation between zones of the contaminant plume. On the basis of this approach, it is estimated that TCE in downgradient well 236 is more than 40% biodegraded relative to TCE in the proposed source area.  相似文献   

19.
Stable carbon isotopic analysis has the potential to assess biodegradation of chlorinated ethenes. Significant isotopic shifts, which can be described by Rayleigh enrichment factors, have been observed for the biodegradation of trichloroethlyene (TCE), cis-dichloroethylene (cDCE), and vinyl chloride (VC). However, until this time, no systematic investigation of isotopic fractionation during perchloroethylene (PCE) degradation has been undertaken. In addition, there has been no comparison of isotopic fractionation by different microbial consortia, nor has there been a comparison of isotopic fractionation by consortia generated from the same source, but growing under different conditions. This study characterized carbon isotopic fractionation during reductive dechlorination of the chlorinated ethenes, PCE in particular, for microbial consortia from two different sources growing under different environmental conditions in order to assess the extent to which different microbial consortia result in different fractionation factors. Rayleigh enrichment factors of -13.8@1000, -20.4@1000, and -22.4@1000 were observed for TCE, cDCE, and VC, respectively, for dechlorination by the KB-1 consortium. In contrast, isotopic fractionation during reductive dechlorination of perchloroethylene (PCE) could not always be approximated by a Rayleigh model. Dechlorination by one consortium followed Rayleigh behavior (epsilon = -5.2), while a systematic change in the enrichment factor was observed over the course of PCE degradation by two other consortia. Comparison of all reported enrichment factors for reductive dechlorination of the chlorinated ethenes shows significant variation between experiments. Despite this variability, these results demonstrate that carbon isotopic analysis can provide qualitative evidence of the occurrence and relative extent of microbial reductive dechlorination of the chlorinated ethenes.  相似文献   

20.
Kinetic studies with two different anaerobic mixed cultures (the PM and the EV cultures) were conducted to evaluate inhibition between chlorinated ethylenes. The more chlorinated ethylenes inhibited the reductive dechlorination of the less chlorinated ethylenes, while the less chlorinated ethylenes weakly inhibited the dechlorination of the more chlorinated ethylenes. Tetrachloroethylene (PCE) inhibited reductive trichloroethylene (TCE) dechlorination but not cis-dichloroethylene (c-DCE) dechlorination, while TCE strongly inhibited c-DCE and VC dechlorination. c-DCE also inhibited vinyl chloride (VC) transformation to ethylene (ETH). When a competitive inhibition model was applied, the inhibition constant (K(I)) for the more chlorinated ethylene was comparable to its respective Michaelis-Menten half-velocity coefficient, K(S). Model simulations using independently derived kinetic parameters matched the experimental results well. k(max) and K(S) values required for model simulations of anaerobic dechlorination reactions were obtained using a multiple equilibration method conducted in a single reactor. The method provided precise kinetic values for each step of the dechlorination process. The greatest difference in kinetic parameters was for the VC transformation step. VC was transformed more slowly by the PM culture (k(max) and K(S) values of 2.4+/-0.4 micromol/mg of protein/day and 602+/-7 microM, respectively) compared to the EV culture (8.1+/-0.9 micromol/mg of protein/day and 62.6+/-2.4 microM). Experimental results and model simulations both illustrate how low K(S) values corresponded to efficient reductive dechlorination for the more highly chlorinated ethylenes but caused strong inhibition of the transformation of the less chlorinated products. Thus, obtaining accurate K(S) values is important for modeling both transformation rates of parent compounds and their inhibition on daughter product transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号