首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report an InP-InGaAs-InP double heterojunction bipolar transistor (DHBT), fabricated using a conventional triple mesa structure, exhibiting a 370-GHz f/sub /spl tau// and 459-GHz f/sub max/, which is to our knowledge the highest f/sub /spl tau// reported for a mesa InP DHBT-as well as the highest simultaneous f/sub /spl tau// and f/sub max/ for any mesa HBT. The collector semiconductor was undercut to reduce the base-collector capacitance, producing a C/sub cb//I/sub c/ ratio of 0.28 ps/V at V/sub cb/=0.5 V. The V/sub BR,CEO/ is 5.6 V and the devices fail thermally only at >18 mW//spl mu/m/sup 2/, allowing dc bias from J/sub e/=4.8 mA//spl mu/m/sup 2/ at V/sub ce/=3.9 V to J/sub e/=12.5 mA//spl mu/m/sup 2/ at V/sub ce/=1.5 V. The device employs a 30 nm carbon-doped InGaAs base with graded base doping, and an InGaAs-InAlAs superlattice grade in the base-collector junction that contributes to a total depleted collector thickness of 150 nm.  相似文献   

2.
InP-In/sub 0.53/Ga/sub 0.47/As-InP double heterojunction bipolar transistors (DHBT) have been designed for use in high bandwidth digital and analog circuits, and fabricated using a conventional mesa structure. These devices exhibit a maximum 391-GHz f/sub /spl tau// and 505-GHz f/sub max/, which is the highest f/sub /spl tau// reported for an InP DHBT-as well as the highest simultaneous f/sub /spl tau// and f/sub max/ for any mesa HBT. The devices have been aggressively scaled laterally for reduced base-collector capacitance C/sub cb/. In addition, the base sheet resistance /spl rho//sub s/ along with the base and emitter contact resistivities /spl rho//sub c/ have been lowered. The dc current gain /spl beta/ is /spl ap/36 and V/sub BR,CEO/=5.1 V. The devices reported here employ a 30-nm highly doped InGaAs base, and a 150-nm collector containing an InGaAs-InAlAs superlattice grade at the base-collector junction. From this device design we also report a 142-GHz static frequency divider (a digital figure of merit for a device technology) fabricated on the same wafer. The divider operation is fully static, operating from f/sub clk/=3 to 142.0 GHz while dissipating /spl ap/800 mW of power in the circuit core. The circuit employs single-buffered emitter coupled logic (ECL) and inductive peaking. A microstrip wiring environment is employed for high interconnect density, and to minimize loss and impedance mismatch at frequencies >100 GHz.  相似文献   

3.
The design of a low-voltage 40-GHz complementary voltage-controlled oscillator (VCO) with 15% frequency tuning range fabricated in 0.13-/spl mu/m partially depleted silicon-on-insulator (SOI) CMOS technology is reported. Technological advantages of SOI over bulk CMOS are demonstrated, and the accumulation MOS (AMOS) varactor limitations on frequency tuning range are addressed. At 1.5-V supply, the VCO core and each output buffer consumes 11.25 mW and 3 mW of power, respectively. The measured phase noise at 40-GHz is -109.73 dBc/Hz at 4-MHz offset from the carrier, and the output power is -8 dBm. VCO performance using high resistivity substrate (/spl sim/300-/spl Omega//spl middot/cm) has the same frequency tuning range but 2 dB better phase noise compared with using low resistivity substrate (10 /spl Omega//spl middot/cm). The VCO occupies a chip area of only 100 /spl mu/m by 100 /spl mu/m (excluding pads).  相似文献   

4.
Single crystals of monoclinic BaY/sub 2/F/sub 8/, doped with different Nd/sup 3+/ concentrations, were successfully grown by means of the Czochralski method. Here, we present a polarized infrared (IR) spectroscopic investigation and diode-pumped continuous-wave laser results in the 1 /spl mu/m wavelength region. Moreover for the first time 1.3 /spl mu/m laser emission has been characterized. Q-switching results in the 1-/spl mu/m region are also presented.  相似文献   

5.
Logic CMOS-based RF technology is introduced for a 10-Gb transceiver in which active and passive RF devices have been realized in a single chip. RF nMOS of 115-GHz f/sub T/, 100-GHz f/sub max/, and sub-1.0-dB NF/sub min/ at 10 GHz have been fabricated by aggressive device scaling and layout optimization. High-Q MiM capacitor and spiral Cu inductors have been successfully implemented in the same chip by 0.13-/spl mu/m low-K/Cu back end of integration line technology. Core 1.0 V MOS and/or junction varactors for VCO at 10 GHz are offerings free of extra cost and realized by the elaborated layout.  相似文献   

6.
A 900-MHz single-pole double-throw (SPDT) switch with an insertion loss of 0.5 dB and a 2.4-GHz SPDT switch with an insertion loss of 0.8 dB were implemented using 3.3-V 0.35-/spl mu/m NMOS transistors in a 0.18-/spl mu/m bulk CMOS process utilizing 20-/spl Omega//spl middot/cm p/sup -/ substrates. Impedance transformation was used to reduce the source and load impedances seen by the switch to increase the power handling capability. SPDT switches with 30-/spl Omega/ impedance transformation networks exhibit 0.97-dB insertion loss and 24.3-dBm output P/sub 1dB/ when tuned for 900-MHz operation, and 1.10-dB insertion loss and 20.6-dBm output P/sub 1dB/ when tuned for 2.4-GHz operation. The 2.4-GHz switch is the first bulk CMOS switch which can be used for 802.11b wireless local area network applications.  相似文献   

7.
A 37-GHz voltage controlled oscillator (VCO) fabricated in IBM's 47-GHz SiGe BiCMOS technology is presented. The VCO achieves a phase noise of -81dBc/Hz at 1-MHz offset from the carrier while delivering an output power of -30dBm to 50 /spl Omega/ buffers. Drawing 15-mA of dc current from a 3-V power supply the VCO occupies 350/spl mu/m/spl times/280/spl mu/m of silicon area. Capacitive emitter degeneration and compact layout are used to achieve high f/sub OSC//f/sub T/ ratio.  相似文献   

8.
Metal-ferroelectric-insulator-semiconductor (MFIS) field-effect transistors with Pb(Zr/sub 0.53/,Ti/sub 0.47/)O/sub 3/ ferroelectric layer and dysprosium oxide Dy/sub 2/O/sub 3/ insulator layer were fabricated. The out-diffusion of atoms between Dy/sub 2/O/sub 3/ and silicon was examined by secondary ion mass spectrometry profiles. The size of the memory windows was investigated. The memory windows measured from capacitance-voltage curves of MFIS capacitors and I/sub DS/-V/sub GS/ curves of MFIS transistors are consistent. The nonvolatile operation of MFIS transistors was demonstrated by applying positive/negative writing pulses. A high driving current of 9 /spl mu/A//spl mu/m was obtained even for long-channel devices with a channel length of 20 /spl mu/m. The electron mobility is 181 cm/sup 2//V/spl middot/s. The retention properties of MFIS transistors were also measured.  相似文献   

9.
Low-frequency noise measurements were performed on p- and n-channel MOSFETs with HfO/sub 2/, HfAlO/sub x/ and HfO/sub 2//Al/sub 2/O/sub 3/ as the gate dielectric materials. The gate length varied from 0.135 to 0.36 /spl mu/m with 10.02 /spl mu/m gate width. The equivalent oxide thicknesses were: HfO/sub 2/ 23 /spl Aring/, HfAlO/sub x/ 28.5 /spl Aring/ and HfO/sub 2//Al/sub 2/O/sub 3/ 33 /spl Aring/. In addition to the core structures with only about 10 /spl Aring/ of oxide between the high-/spl kappa/ dielectric and silicon substrate, there were "double-gate oxide" structures where an interfacial oxide layer of 40 /spl Aring/ was grown between the high-/spl kappa/ dielectric and Si. DC analysis showed low gate leakage currents in the order of 10/sup -12/A(2-5/spl times/10/sup -5/ A/cm/sup 2/) for the devices and, in general, yielded higher threshold voltages and lower mobility values when compared to the corresponding SiO/sub 2/ devices. The unified number-mobility fluctuation model was used to account for the observed 1/f noise and to extract the oxide trap density, which ranged from 1.8/spl times/10/sup 17/ cm/sup -3/eV/sup -1/ to 1.3/spl times/10/sup 19/ cm/sup -3/eV/sup -1/, somewhat higher compared to conventional SiO/sub 2/ MOSFETs with the similar device dimensions. There was no evidence of single electron switching events or random telegraph signals. The aim of this paper is to present a general discussion on low-frequency noise characteristics of the three different high-/spl kappa//gate stacks, relative comparison among them and to the Si--SiO/sub 2/ system.  相似文献   

10.
InP/In/sub 0.53/Ga/sub 0.47/As/InP double heterojunction bipolar transistors (DHBT) have been designed for increased bandwidth digital and analog circuits, and fabricated using a conventional mesa structure. These devices exhibit a maximum 450 GHz f/sub /spl tau// and 490 GHz f/sub max/, which is the highest simultaneous f/sub /spl tau// and f/sub max/ for any HBT. The devices have been scaled vertically for reduced electron collector transit time and aggressively scaled laterally to minimize the base-collector capacitance associated with thinner collectors. The dc current gain /spl beta/ is /spl ap/ 40 and V/sub BR,CEO/=3.9 V. The devices operate up to 25 mW//spl mu/m/sup 2/ dissipation (failing at J/sub e/=10 mA//spl mu/m/sup 2/, V/sub ce/=2.5 V, /spl Delta/T/sub failure/=301 K) and there is no evidence of current blocking up to J/sub e//spl ges/12 mA//spl mu/m/sup 2/ at V/sub ce/=2.0 V from the base-collector grade. The devices reported here employ a 30-nm highly doped InGaAs base, and a 120-nm collector containing an InGaAs/InAlAs superlattice grade at the base-collector junction.  相似文献   

11.
This paper describes an RF SiGe BiCMOS technology based on a standard 0.18-/spl mu/m CMOS process. This technology has the following key points: 1) A double-poly self-aligned SiGe-HBT is produced by adding a four-mask process to the CMOS process flow-this HBT has an SiGe epitaxial base selectively grown on an epi-free collector; 2) two-step annealing of CMOS source/drain/gate activation is utilized to solve the thermal budget tradeoff between SiGe-HBTs and CMOS; and 3) a robust Ge profile design is studied to improve the thermal stability of the SiGe-base/Si-collector junction. This process yields 73-GHz f/sub T/, 61-GHz f/sub max/ SiGe HBTs without compromising 0.18-/spl mu/m p/sup +//n/sup +/ dual-gate CMOS characteristics.  相似文献   

12.
A high performance and compact current mirror with extremely low input and high output resistances (R/sub in//spl sim/0.01/spl Omega/, R/sub out//spl sim/10 G/spl Omega/), high copying accuracy, very low input and output voltage requirements (V/sub in/, V/sub out//spl ges/V/sub DSsat/), high bandwidth (200 MHz using a 0.5 /spl mu/m CMOS technology) and low settling time (25 ns) is proposed. Simulations and experimental results are shown that validate the circuit.  相似文献   

13.
Two single-pole, double-throw transmit/receive switches were designed and fabricated with different substrate resistances using a 0.18-/spl mu/m p/sup $/substrate CMOS process. The switch with low substrate resistances exhibits 0.8-dB insertion loss and 17-dBm P/sub 1dB/ at 5.825 GHz, whereas the switch with high substrate resistances has 1-dB insertion loss and 18-dBm P/sub 1dB/. These results suggest that the optimal insertion loss can be achieved with low substrate resistances and 5.8-GHz T/R switches with excellent insertion loss and reasonable power handling capability can be implemented in a 0.18-/spl mu/m CMOS process.  相似文献   

14.
A new silicon on insulator (SOI) wafer with epitaxial-Si/ epitaxial-MgO/spl dot/Al/sub 2/O/sub 3/ (0.1 /spl mu/m)/SiO/sub 2/(0.5 /spl mu/m)/  相似文献   

15.
For the first time, we successfully fabricated and demonstrated high performance metal-insulator-metal (MIM) capacitors with HfO/sub 2/-Al/sub 2/O/sub 3/ laminate dielectric using atomic layer deposition (ALD) technique. Our data indicates that the laminate MIM capacitor can provide high capacitance density of 12.8 fF//spl mu/m/sup 2/ from 10 kHz up to 20 GHz, very low leakage current of 3.2 /spl times/ 10/sup -8/ A/cm/sup 2/ at 3.3 V, small linear voltage coefficient of capacitance of 240 ppm/V together with quadratic one of 1830 ppm/V/sup 2/, temperature coefficient of capacitance of 182 ppm//spl deg/C, and high breakdown field of /spl sim/6 MV/cm as well as promising reliability. As a result, the HfO/sub 2/-Al/sub 2/O/sub 3/ laminate is a very promising candidate for next generation MIM capacitor for radio frequency and mixed signal integrated circuit applications.  相似文献   

16.
Low-frequency noise measurements were performed on p- and n-channel MOSFETs with HfO/sub 2/, HfAlO/sub x/ and HfO/sub 2//Al/sub 2/O/sub 3/ as the gate dielectric materials. The gate length varied from 0.135 to 0.36 /spl mu/m with 10.02 /spl mu/m gate width. The equivalent oxide thicknesses were: HfO/sub 2/ 23 /spl Aring/, HfAlO/sub x/ 28.5 /spl Aring/ and HfO/sub 2//Al/sub 2/O/sub 3/ 33 /spl Aring/. In addition to the core structures with only about 10 /spl Aring/ of oxide between the high-K dielectric and silicon substrate, there were "double-gate oxide" structures where an interfacial oxide layer of 40 /spl Aring/ was grown between the high-K dielectric and Si. DC analysis showed low gate leakage currents in the order of 10/sup -12/ A(2-5 /spl times/ 10/sup -5/ A/cm/sup 2/) for the devices and, in general, yielded higher threshold voltages and lower mobility values when compared to the corresponding SiO/sub 2/ devices. The unified number-mobility fluctuation model was used to account for the observed 1/f noise and to extract the oxide trap density, which ranged from 1.8 /spl times/ 10/sup 17/ cm/sup -3/ eV/sup -1/ to 1, 3 /spl times/ 10/sup 19/ cm/sup -3/ eV/sup -1/ somewhat higher compared to conventional SiO/sub 2/ MOSFETs with the similar device dimensions. There was no evidence of single electron switching events or random telegraph signals. The aim of this paper is to present a general discussion on low-frequency noise characteristics of the three different high-K/gate stacks, relative comparison among them and to the Si-SiO/sub 2/ system.  相似文献   

17.
The first room-temperature operation of In/sub 0.5/Ga/sub 0.5/As quantum dot lasers grown directly on Si substrates with a thin (/spl les/2 /spl mu/m) GaAs buffer layer is reported. The devices are characterised by J/sub th//spl sim/1500 A/cm/sup 2/, output power >50 mW, and large T/sub 0/ (244 K) and constant output slope efficiency (/spl ges/0.3 W/A) in the temperature range 5-95/spl deg/C.  相似文献   

18.
In this paper, we discuss the electrical characteristics and reliability of UV transparent Si/sub 3/N/sub 4/ metal-insulator-metal (MIM) capacitors. We examine film thicknesses in the range of 55 to 25 nm with capacitance densities from 1.2 ff//spl mu/m/sup 2/ to 2.8 ff//spl mu/m/sup 2/, respectively, for single MIM capacitors. A new approach for projecting the dielectric reliability of these films extends the limits of maximum operating voltage. Accounting for temperature acceleration and area scaling, the projected lifetimes can be met for a wide range of operating conditions.  相似文献   

19.
A microwatt frequency divider for the 2.5-GHz ISM band is proposed. This divider directly modulates the output in a ring oscillator by means of a switch and realizes low power consumption with low supply voltage and a wide locking range. It is fabricated using a five-layer-metal and 0.2-/spl mu/m-gate length CMOS process. The core size is 10.8/spl times/10.5 /spl mu/m/sup 2/, which is much smaller than that of a typical inductor-enhanced frequency divider. This divider operates with a supply voltage in the range from 1.8 to 0.7V, and attains minimum power consumption of 44 /spl mu/W, in which case the supply voltage is 0.7 V, the maximum operating frequency is 4.3 GHz, and the locking range is 2.3 GHz. A derivation of the frequency locking range of the divider is provided in the Appendix.  相似文献   

20.
A compact monolithic integrated differential voltage controlled oscillator (VCO) using 0.5-/spl mu/m emitter width InP/InGaAs double-heterostructure bipolar transistors with a total chip size of 0.42 mm /spl times/ 0.46 mm is realized by using cross-coupled configuration for extremely high frequency satellite communications system applications. The device performance of F/sub max/ greater than 320 GHz at a current density of 5 mA//spl mu/m/sup 2/ and 5-V BVceo allows us to achieve a low phase noise 42.5-GHz fundamental VCO with -0.67-dBm output power. The VCO exhibits the phase noise of -106.8 dBc/Hz at 1-MHz offset and -122.3 dBc/Hz at 10-MHz offset from the carrier frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号