共查询到20条相似文献,搜索用时 62 毫秒
1.
支持向量机是基于统计学习理论的模式分类器。它通过结构风险最小化准则和核函数方法,较好地解决了模式分类器复杂性和推广性之间的矛盾,引起了大家对模式识别领域的极大关注。近年来,支持向量机在手写体识别、人脸识别、文本分类等领域取得了很大的成功。文章将一种新的核函数用于虹膜识别,并与传统的多项式核函数、高斯核函数进行了比较。初步结果显示了该核函数的应用潜力。 相似文献
2.
传统的支持向量机(SVM)是两类分类问题,如何有效地将其推广到多类分类问题仍是一项有待研究的课题。本文在对现有主要的四种多类支持向量机分类算法讨论的基础上,结合文本分类的特点,详细介绍了决策树支持向量机和几种改进多类支持向量机方法在文本分类中的应用。 相似文献
3.
SVM在许多领域的分类和回归方面起了越来越重要的作用,显示了它的优势。由于SVM方法较好的理论基础和它在一些领域的应用中表现出来的与众不同的优秀的泛化性能,近年来,许多关于SVM方法的应用研究陆续提了出来。围绕支持向量机在分类和回归中的问题进行了阐述,使我国在这一领域的研究和应用能够尽快赶上国际先进水平具有十分重要的意义。 相似文献
4.
支持向量机组合分类及其在文本分类中的应用 总被引:3,自引:0,他引:3
针对标准支持向量机对野值点和噪音敏感,分类时明显倾向于大类别的问题,提出了一种同时考虑样本差异和类别差异的双重加权支持向量机。并给出了由近似支持向量机结合支持向量识别算法,识别野值点和计算样本重要性权值的方法.双重加权支持向量机和近似支持向量机组合的新分类算法尤其适用于样本规模大、样本质量不一、类别不平衡的文本分类问题.实验表明新算法改善了分类器的泛化性能。比传统方法具有更高的查准率和查全率. 相似文献
5.
6.
支持向量机在电子邮件分类中的应用研究 总被引:1,自引:1,他引:1
在电子邮件分类的研究中,针对研究垃圾邮件识别问题,垃圾邮件问题日益严重,影响正常工作,受到研究人员的广泛关注.而电子邮件特征维数相当的高,使传统分类方法存在分类速度慢、正确率低的问题.为了加快电子邮件分类速度、提高分类的正确率,更好的过滤出垃圾邮件,提出一种基于支持向量机的电子邮件自动分类方法.采用互信息量法提取电子邮件关键词作为分类特征,选择最优的分类特征,加快分类速度,然后支持向量机模型对分类特征进行学习训练,建立最优电子邮件分类器模型,最后对电子邮件测试集进行分类.UCI垃圾邮件数据库进行仿真,支持向量机识别正确率远远高于神经网络,且分类速度明显加快,能够很好的把垃圾分类出来.支持向量机分类方法是一种有效的电子邮件分类方法,有利于清除拉圾邮件. 相似文献
7.
支持向量机在文本分类中的应用 总被引:1,自引:0,他引:1
段莹 《计算机与数字工程》2012,40(7):87-88,149
文中提出了基于朴素贝叶斯的支持向量机的分类方法,首先采用文本预处理,再根据文本的特征进行特征降维,然后用基于朴素贝叶斯的算法对支持向量机进行训练后,再对新的文本进行分类。实验表明,该方法比传统的SVM算法具有较高的准确率。 相似文献
8.
基于W12再生核支持向量机的模式分类研究 总被引:1,自引:0,他引:1
支持向量机是基于统计学习理论的模式分类器.它通过结构风险最小化准则和核函数方法,较好地解决了模式分类器复杂性和推广性之间的矛盾,引起了大家对模式识别领域的极大关注.近年来,支持向量机在手写体识别、人脸识别、文本分类等领域取得了很大的成功.文章将一种新的核函数用于虹膜识别,并与传统的多项式核函数、高斯核函数进行了比较.初步结果显示了该核函数的应用潜力. 相似文献
9.
支持向量机在网页信息分类中的应用研究 总被引:4,自引:0,他引:4
针对日益膨胀的网络信息,为方便用户准确定位所需的信息,将支持向量机(SVM)与二叉决策树结合起来进行网页信息的分类,并在构造决策支持向量机分类模型的基础上,进一步结合聚类的方法,解决多类分类问题,减少支持向量机的训练样本数,提高分类训练速度和分类准确率. 相似文献
10.
支持向量机在多类分类问题中的推广 总被引:51,自引:4,他引:51
支持向量机(SVMs)最初是用以解决两类分类问题,不能直接用于多类分类,如何有效地将其推广到多类分类问题是一个正在研究的问题。该文总结了现有主要的支持向量机多类分类算法,系统地比较了各算法的训练速度、分类速度和推广能力,并分析它们的不足和有待解决的问题。 相似文献
11.
基于核函数的支持向量机分类方法 总被引:2,自引:0,他引:2
支持向量机是目前正在兴起的一种新的数据挖掘分类方法,阐述了支持向量机的理论基础及核函数,阐明了支持向量机分类的基本思想,分析了支持向量机的优缺点,对支持向量机在海量数据分类中的应用前景进行了展望。 相似文献
12.
模糊支持向量分类机 总被引:6,自引:0,他引:6
研究了当训练点的输出为模糊数时支持向量分类机的构建问题。对于线性模糊分类问题,首先将其转化为模糊系数规划。利用模糊系数规划的λ-最优规划,求解模糊系数规划得到模糊最优解(模糊集合)以及模糊最优分类函数集(取值为最优分类函数而隶属度为λ(0≤λ≤1)的模糊集合),从而构造线性模糊支持向量分类机。对于非线性模糊分类问题,引入核函数,类似干线性模糊分类问题得到非线性模糊支持向量分类机。最后构造显示模糊支持向量分类机特点的模糊支持向量集(取值为模糊训练点,隶属度为λ(0≤λ≤1)的模糊集合)。模糊支持向量分类机较好地解决了支持向量机中含有模糊信息的分类问题。 相似文献
13.
支持向量机是基于小样本统计理论的一种新的机器学习方法,主要解决两分类问题。目前已成为机器学习领域的研究热点,但其应用方面的研究刚刚开始,在文本分类,图像分类、生物序列分析等方面得到成功应用。文章根据空间数据分类数据海量特点将SVM分类算法应用到炮阵地地形分析中,使得识别率大大提高。 相似文献
14.
一种快速支持向量机分类算法的研究 总被引:16,自引:1,他引:16
提出一种快速的支持向量机分类算法——FCSVM,对支持向量集采用变换的方式,用少量的支持向量代替全部支持向量进行分类计算,在保证不损失分类精度的前提下使得分类速度有较大提高.在UCI标准数据集上进行的分类实验以及在FERET标准人脸库上进行的人脸识别实验都表明该算法具有较好的性能,在一定程度上克服了传统的支持向量机分类速度较慢的缺点、尤其在训练集规模庞大、支持向量数量较多的情况下,采用该算法能够较大幅度地减小计算复杂度,提高分类速度. 相似文献
15.
L. Meng Q. H. Wu Department of Electrical Engineering Electronics The University of Liverpool Liverpool L GJ UK 《国际自动化与计算杂志》2005,2(1):6-12
1 Introduction Based on recent advances in statistical learning theory, Support Vector Machines (SVMs) compose a new class of learning system for pattern classification. Training a SVM amounts to solving a quadratic pro- gramming (QP) problem with a dense matrix. Stan- dard QP solvers require the full storage of this matrix, and their e?ciency lies in its sparseness, which make its application to SVM training with large training sets intractable. The SVM, pioneered by Vapnik and his te… 相似文献
16.
多分类孪生支持向量机研究进展 总被引:3,自引:0,他引:3
孪生支持向量机因其简单的模型、快速的训练速度和优秀的性能而受到广泛关注.该算法最初是为解决二分类问题而提出的,不能直接用于解决现实生活中普遍存在的多分类问题.近来,学者们致力于将二分类孪生支持向量机扩展为多分类方法并提出了多种多分类孪生支持向量机.多分类孪生支持向量机的研究已经取得了一定的进展.本文主要工作是回顾多分类孪生支持向量机的发展,对多分类孪生支持向量机进行合理归类,分析各个类型的多分类孪生支持向量机的理论和几何意义.本文以多分类孪生支持向量机的子分类器组织结构为依据,将多分类孪生支持向量机分为:基于“一对多”策略的多分类孪生支持向量机、基于“一对一”策略的多分类孪生支持向量机、基于“一对一对余”策略的多分类孪生支持向量机、基于二叉树结构的多分类孪生支持向量机和基于“多对一”策略的多分类孪生支持向量机.基于有向无环图的多分类孪生支持向量机训练过程与基于“一对一”策略的多分类孪生支持向量机类似,但是其决策方式有其特殊的优缺点,因此本文将其也独立为一类.本文分析和总结了这六种类型的多分类孪生支持向量机的算法思想、理论基础.此外,还通过实验对比了分类性能.本文工作为各种多分类孪生支持向量机之间建立了联系比较,使得初学者能够快速理解不同多分类孪生支持向量机之间的本质区别,也对实际应用中选取合适的多分类孪生支持向量机起到一定的指导作用. 相似文献
17.
基于邻域原理计算海量数据支持向量的研究 总被引:19,自引:0,他引:19
使用支持向量机理论计算海量数据的支持向量是相当困难的.为了解决这个问题,提出了基于邻域原理计算支持向量的方法.在对支持向量机原理与邻域原理比较分析的基础上讨论了以下问题:(1)构建了从样本空间经过特征空间到扩维空间的复合内积函数,给出计算支持向量的邻域思想;(2)将支持向量机的理论建立在距离空间上,设计出了计算支持向量的邻域算法,从而把该算法理解为简化计算二次规划的方法;(3)实验结果说明,邻域原理可以有效地解决对海量数据计算支持向量的问题. 相似文献
18.
19.
基于支持向量机的音频分类与分割 总被引:8,自引:0,他引:8
音频分类与分割是提取音频结构和内容语义的重要手段,是基于内容的音频、视频检索和分析的基础。支持向量机(SVM)是一种有效的统计学习方法。本文提出了一种基于SVM的音频分类算法。将音频分为5类:静音、噪音、音乐、纯语音和带背景音的语音。在分类的基础上,采用3个平滑规则对分类结果进行平滑。分析了SVM分类嚣的分类性能,同时也评估了本文提出的新的音频特征在SVM分类嚣上的分类效果。实验结果显示,基于SVM的音频分类算法分类效果良好,平滑处理后的音频分割结果比较准确。 相似文献