首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study was conducted of the relative effect of vapor—liquid—solid (VLS) and vapor—solid (VS) SiC whiskers on the effective thermal diffusivity and conductivity of pressed-densified silicon nitride. It was found that VLS whiskers cause an increase in the thermal diffusivity/conductivity, whereas the opposite effect was found for the VS-SiC whiskers. Comparison with composite theory suggests that the VS-SiC whiskers have a thermal conductivity as low as 25 to 30 W/(m·K). In contrast the VLS-SiC whiskers appear to have a value for the thermal conductivity of at least about 100 W/(m·K) to as high as 250 W/(m·K). These large differences in thermal conductivity for these two types of SiC whiskers are attributed to the much larger density of structural defects in the VS-SiC whiskers, which act as phonon scatterers, thereby lowering the thermal conductivity.  相似文献   

2.
The thermal conductivities of two lithium aluminosilicate glass-ceramic matrix composites reinforced with 30 vol% of either SiC VS (rice hull) whiskers or SiC VLS (vapor-liquid-solid) whiskers were determined from room temperature to 500°C. Because of the preferred alignment of the whiskers, the thermal conductivity values normal to the hot-pressing direction were found to be significantly higher than those in the parallel direction. The composites with the VLS whiskers exhibited higher thermal conductivity values than those with the VS whiskers. An analysis of the room-temperature data showed that the thermal conductivity values parallel to the hot-pressing direction were higher than those predicted from theory, even for whiskers with infinite thermal conductivity and perfect interfacial thermal contact. This effect was attributed to a significant contribution of percolation to the total heat flow as a result of direct whisker-to-whisker contact. For both types of whiskers, the interfacial thermal conductance and thermal conductivity values (at ∼6.5 × 105 W/(m2-K) and 200 W/(m·K), respectively) inferred from the composite thermal conductivity values perpendicular to the hot-pressing direction were essentially the same. It was concluded that the order of magnitude difference in thickness for the two whisker types was primarily responsible for the differences in thermal conductivity measured for these two composites.  相似文献   

3.
Thermal diffusivity and conductivity values for several Al2O3-SiC whisker composites were determined. The thermal diffusivity values spanned the range from 373 to 1473 K, and thermal conductivity data wre obtained between 305 and 365 K. The thermal diffusivity decreased with increasing temperature and increased with SiC-whisker content. An estimate of the thermal conductivity of the whiskers was obtained from the direct thermal conductivity measurements, but attempts to derive whisker conductivity values from the thermal diffusivity data were not successful because the laser flash method lacks the required accuracy and precision. Specimens were subjected to two different thermal quench experiments to investigate the effect of thermal history on diffusivity. In the most severe case, multiple 1073- to 373-K quenches, radial cracks were observed in the test specimens; however, there was no change in diffusivity. The lack of sensitivity to thermal cycling appears to be related to the sample size.  相似文献   

4.
The thermal diffusivity of silicon carbide fiber- and whisker-reinforced osumilite glass-ceramic was determined by the laser-flash method. The thermal conductivity was calculated from the data of thermal diffusivity, density, and specific heat measured by differential scanning calorimetry. Because of the much higher thermal conductivity of the crystalline silicon carbide whiskers compared to the corresponding value for the amorphous fibers, the whisker-reinforced composites exhibited significantly higher thermal diffusivity and thermal conductivity than the fiber-reinforced composites.  相似文献   

5.
The thermal shock resistance (indentation–quench method), fracture toughness, and thermal conductivity of three alumina–silicon–carbide–whisker composites and alumina have been investigated. A new procedure for the evaluation of thermal conductivity data is suggested, and higher room-temperature thermal conductivity than that reported in the literature is determined for silicon carbide whiskers. The ranking of the materials according to thermal shock resistance is consistent with the ranking according to fracture toughness but disagrees with the ranking according to thermal conductivity. This finding supports the analytically obtained result that, in defining thermal shock resistance, fracture toughness is more important than thermal conductivity.  相似文献   

6.
彭犇  岳昌盛  陆璇  郭敏  张梅 《硅酸盐通报》2010,29(1):167-170
以煤矸石和碳黑为主要原料,在1800 K下碳热还原氮化合成了纯度较高、含有大量晶须的β-SiAlON材料.FESEM照片表明β-SiAlON晶须多为细长柱状,直径120~220 nm,长度1.5~5 μm,晶须生长机制由VLS(vapor-liquid-solid)机制和VS(vapor-solid)机制组成.  相似文献   

7.
A new whisker, α-MoO3, was fabricated via molybdenum thread oxidation at 973, 1023, and 1173 K. Various morphologies of the whiskers, such as flakelike, platelike, and needlelike, were observed under different fabrication conditions. The lateral surfaces of the whiskers were close-packed (010) plane, and the growth direction was (001), which related to the unique layered structure of the α-MoO3 crystal. Growth of the MoO3 whiskers was attributed to a vapor-liquid-solid (VLS) mechanism at 1023 and 1173 K, whereas, at 973 K, growth was attributed to a vapor-liquid (VL) mechanism.  相似文献   

8.
Porous anorthite/mullite whisker ceramics with both high strength and low thermal conductivity have been successfully prepared by combining seed-assisted in situ synthesis and foam-freeze casting techniques. The addition of mullite seed was conducive to a reduction in the sintering shrinkage, pore size, and anorthite grain size. This increased the high aspect ratio of mullite whiskers, which enhanced the strength and diminished the thermal conductivity. Mullite whiskers overlapped to form a stable three-dimensional network structure similar to the bird's nest, which was also beneficial to heighten the mechanical properties of the prepared porous ceramics. Through this method, the prepared materials had a high apparent porosity of 87.7–90.2%, a low bulk density of 0.29–0.36 g/cm3, a high compressive strength of 0.65–3.31 MPa, and low thermal conductivity of 0.067–0.112 W/m·K. The results indicated that the method described here can fabricate porous ceramics with excellent properties for further thermal insulating applications.  相似文献   

9.
The effects of SiC whisker addition into nano-SiC powder-carbon black template mixture on flexural strength, thermal conductivity, and specific flow rate of porous silica-bonded SiC ceramics were investigated. The flexural strength of 1200°C-sintered porous silica-bonded SiC ceramics increased from 9.5 MPa to 12.8 MPa with the addition of 33 wt% SiC whisker because the SiC whiskers acted as a reinforcement in porous silica-bonded SiC ceramics. The thermal conductivity of 1200°C-sintered porous silica-bonded SiC ceramics monotonically increased from 0.360 Wm–1K–1 to 1.415 Wm–1K–1 as the SiC whisker content increased from 0 to 100 wt% because of the easy heat conduction path provided by SiC whiskers with a high aspect ratio. The specific flow rate of 1200°C-sintered porous SiC ceramics increased by two orders of magnitude as the SiC whisker content increased from 0 to 100 wt%. These results were primarily attributed to an increase in pore size from 125 nm to 565 nm and secondarily an increase in porosity from 49.9% to 63.6%. In summary, the addition of 33 wt% SiC whisker increased the flexural strength, thermal conductivity, and specific flow rate of porous silica-bonded SiC ceramics by 35%, 133%, and 266%, respectively.  相似文献   

10.
Silicone rubber/ethylene-vinyl acetate copolymer/magnesium sulfate whisker composites containing ethylene-acrylic acid copolymer (MS/SR/EVM/EAA) as a compatibilizer were successfully prepared. Moreover, the magnesium sulfate whisker surface was modified with 3 wt% of silane coupling agent (KH570), resulting in composites including (unmodified magnesium sulfate whisker) uMS/SR/EVM, (modified magnesium sulfate whisker) mMS/SR/EVM, and mMS/SR/EVM/EAA were compared. The values of thermal decomposition activation energy (Ea) calculated by the two different methods (Kissinger and Friedman methods) show that the composites filled with 5 and 20 phr whiskers have lower values of activation energy (Ea) than the SR/EVM blend. The tensile strength of composites with a 5 phr modified whisker is 14.5 MPa, which is higher than that of the SR/EVM blend and uMS5/SR/EVM composite. The tear strength of the composite with 20 phr mMS is 51.6 kN m−1, much higher than that of the composite with 20 phr uMS and SR/EVM blend. The mechanical properties were also investigated after thermal aging of the composites at 85°C for 48 h. The thermal conductivity of the composites with high filler loading was studied.  相似文献   

11.
The fracture toughness of a 30 vol% SiC whisker/Al2O3 matrix composite was evaluated as a function of whisker surface chemistry. Two types of SiC whiskers (Silar-SC-9 and Tateho-SCW-1-S) were investigated. Modification of the whisker surface chemistry was achieved by subjecting the whiskers to thermal treatments under controlled atmospheres. Whisker surface chemistry, as determined by X-ray photoelectron spectroscopy, was correlated to the fracture toughness of the composites.  相似文献   

12.
Microstructure and Growth Model for Rice-Hull-Derived SiC Whiskers   总被引:3,自引:0,他引:3  
The microstructure of silicon carbide whiskers grown from rice hulls has been studied using methods of high-resolution analytical electron microscopy. Small, partially crystalline inclusions (∼10 nm) containing calcium, manganese, and oxygen are concentrated in whisker core regions, while peripheral regions are generally inclusion free. The distinct microphase distribution is evidence of a two-stage growth process in which the core region grows first, followed by normal growth toward whisker sides. Partial dislocations extend radially from the core region to the surface and tend to be paired in V-shaped configurations. Whisker surfaces exhibit microroughness due to a tendency to develop small facets on close-packed planes. The microstructural data obtained from TEM observations are used as a basis for discussion of the mechanisms involved in whisker growth, and a model of the growth process is proposed. The model includes a two-dimensional growth mechanism involving vapor, liquid, and solid phases, although it is significantly different from the classical vapor-liquid-solid (VLS) process of whisker growth.  相似文献   

13.
Aluminum‐borate‐whiskers‐reinforced bismaleimide (BMI/Al18B4O33) composites were prepared, and the mechanical and thermal properties were investigated. Results show that the coupling agent used for surface treatment of whiskers has a great effect on the properties of these materials. Composites containing surface‐untreated whiskers, or silane‐compound‐KH 921‐treated whiskers, exhibited initially only a slight increase in the flexural strength when the whiskers weight content increased up to 5 wt%; thereafter, they showed a sharp decrease when the whiskers content was higher than 5 wt%. On the other hand, impact strength tests showed that the addition of the two kinds of whiskers decreased the impact strength of the composites. However, studies of the composite containing borate (BE4)‐treated whiskers showed that its flexural strength greatly increased with increasing whisker content. Moreover, the composite showed initially an increase in impact strength with a whisker content up to 10 wt%, then showing a slight decrease when the whisker content reached 15 wt%. Scanning electron microscopy observations revealed that the two coupling agents (KH 921 and BE4) employed in this work tend to change the fracture features of the composites from brittleness to that of ductile behaviour. Copyright © 2004 Society of Chemical Industry  相似文献   

14.
以硼酸、氢氧化铝、六钛酸钾晶须(PTW)等为主要原料,采用固相烧结法制备了硼酸铝-六钛酸钾晶须复合隔热材料,研究了预合成硼酸铝晶须(ABW)对材料显微结构、力学性能及隔热性能等方面的影响。结果表明:随着制备温度的提高,ABW与PTW由点接触转变为晶须间通过K1.5(Al1.5Ti6.5)O16相结合,提高了复合隔热材料的致密度和耐压强度;细小的ABW在PTW之间形成了尺寸更小的孔隙,通过减少对流和辐射传热,显著提高了晶须复合隔热材料的隔热性能。控制PTW、预合成ABW、炭黑质量比为9∶1∶3,在1 100 ℃可制得体积密度为1.11 g/cm3、耐压强度为3.5 MPa、导热系数为0.11~0.16 W/(m·K)(200~800 ℃)的硼酸铝-六钛酸钾晶须复合隔热材料。  相似文献   

15.
Aluminum borate whiskers of 0.5–1.0 μ diameter and alumina particles of 10–20 μ diameter were coated with SnO2 by the reaction of SnCl4–H2O–N2 gas mixtures in a rotary kiln reactor. Prior to coating, the whiskers were slightly etched to ensure adhesion between the SnO2 layer and the whisker surface. The whiskers were coated at 100°C for 1 h, and then at 300°C for 2 h. This procedure was effective for covering the entire whisker surface with a uniform SnO2 layer. Precoating was not necessary for the alumina particles. A compressed disk of the coated whiskers had an electrical conductivity of 30–40 S/m.  相似文献   

16.
Morphology and Crystallography of Aluminum Nitride Whiskers   总被引:4,自引:0,他引:4  
Highly pure and dense AIN whiskers were produced by carbothermal reaction of an alumina and a carbon source at 1800°C under flowing nitrogen. The whiskers grew via a VLS mechanism where there is a strong interaction between the liquid catalyst and the substrate/support, resulting in a complete lack of droplets at the whisker tips. The whiskers can be described as long and straight single crystals, free of planar defects, having a diameter of 2–30 μm and a length of 0.5–10 cm. They exhibited two different morphologies, planar and serrated. SADPs indicate that their lateral surfaces fall in a great circle of a stereographiv projectiov, joining two pyramidal poles such as the ( 1 101)–(10 1 1). It is suggested that branching in these whiskers occurs by keeping active one of the pyramidal planes and activating a new one.  相似文献   

17.
《Polymer Composites》2017,38(12):2753-2761
In this study, calcium carbonate (CaCO3) whiskers were grafted with poly(methyl methacrylate) (PMMA) by in situ emulsion polymerization using γ‐methacryloxy propyl trimethoxyl silane (γ‐MPS) as a coupling agent, and the properties of resultant whisker were determined using Fourier transform infrared (FTIR) spectroscopy, energy dispersive spectroscopy (EDS), X‐ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The results show that PMMA has been successfully grafted onto the surface of CaCO3 whiskers and the maximum grafting degree (Gd) is 3.75%. The scanning electron microscopy (SEM) micrographs of the tensile‐fractured surfaces show that modified CaCO3 whiskers have strong interfacial adhesion to the poly(vinyl chloride) (PVC) matrix. The tensile strength increases from 44.0 MPa for PVC composite with unmodified whisker to 49.5 MPa for that with grafted whisker. The dynamic mechanical analysis (DMA) and TGA results indicate that the composites reinforced by modified CaCO3 whiskers have much higher modulus, glass transition temperature, and better thermal stability than their counterparts reinforced by unmodified CaCO3 whiskers. POLYM. COMPOS., 38:2753–2761, 2017. © 2015 Society of Plastics Engineers  相似文献   

18.
Porous mullite matrix ceramics have excellent thermal and mechanical properties suitable for applications such as in thermal insulation. However, their applications are limited by processing defects from nonuniform sintering shrinkage and the trade-off between high porosity (preferred for low thermal conductivity) and high mechanical strength. Herein, we seek to minimize the sintering shrinkage by near-net-size preparation and improve the strength by in situ formed whisker network structure. Gelcasting forming technology and pressureless sintering were used to prepare porous mullite matrix ceramics using kyanite and α-Al2O3 powders as the starting materials and using MoO3 to promote the growth of mullite whiskers. The results showed that the sintering shrinkage could be compensated by the volume expansion from solid-state reaction during reaction sintering. The in situ formed three-dimensional (3D) whisker network further reduced sintering shrinkage and effectively improved the strength of the ceramics. An ultralow sintering shrinkage of .78% was achieved. The near-net-shape porous mullite matrix ceramics strengthened by 3D whisker network had a high porosity of 63.9%, a high compressive strength of 83.8 MPa and a high flexural strength of 53.5 MPa.  相似文献   

19.
Sisal whiskers (SW) were prepared by acid hydrolysis for subsequent evaluation as reinforcing material for biodegradable matrices of thermoplastic starch (TPS) and TPS/polycaprolactone (TPS/PCL) blends. The acid hydrolyzed SW had dimensions of 5 ± 2 nm in diameter and 210 ± 60 nm in length and 78% crystallinity. The nanocomposite blends consisted of whisker contents of 5 and 10 wt% and were coextruded with either TPS or TPS/PCL which formed the matrix material. The influence of SW on the morphology, crystallinity, thermal properties, mechanical behavior, structural, and biodegradation of TPS and TPS/PCL matrices were investigated. The lower SW content of 5 wt% dispersed and interacted well with both matrices. The introduction of PCL in the TPS matrix leads to an increased crystallinity and there was evidence that the carbonyl groups of PCL interacted with the OH groups on the surface of the whiskers. Addition of PCL decreased the whisker/whisker interaction over TPS alone, favoring the dispersion of the whiskers in the matrix and, consequently, the reinforcement effect was more pronounced in TPS/PCL blends than in the pure TPS matrix. The addition of the whiskers as reinforcement increased the biodegradability of TPS and TPS/PCL matrices. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers.  相似文献   

20.
A computer model that treats ceramic-powder matrix–ceramic whisker composites as a percolative network of whiskers has been developed. The model calculates the critical fraction of whiskers at the percolation threshold for a two-dimensional random network of whiskers. The computed critical fraction was found to display an inverse dependence on whisker aspect ratio. In addition, the computed critical fraction (27 vol% for a whisker aspect ratio of 7) agreed well with the zero-shrinkage whisker fraction of 30 vol% in the densification of a colloid-pressed alumina–silicon carbide composite that exhibited a two-dimensional orientation of such whiskers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号