首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 765 毫秒
1.
制作普通矩形、密配筋矩形、打孔矩形、楔形和菱形5种类型的现浇超高性能混凝土(UH-PC)接缝板试件,并对其进行抗弯试验,研究了配筋UHPC-普通混凝土(NC)湿接缝界面的抗裂能力、抗弯性能和破坏模式.通过轴拉试验探讨了NC表面处理方式、NC湿润度、UHPC养护龄期和养护方法等对UHPC-NC界面抗裂性能的影响.结果 表...  相似文献   

2.
提出钢-UHPC轻型组合桥面系,以消除正交异性钢桥面铺装层易损和钢桥面板疲劳开裂两类病害。为探究该组合桥面系在局部轮载作用下的横向受弯性能,对10块钢-UHPC组合板进行试验研究与理论分析。试验结果表明:负弯矩作用下,组合板的弹性阶段取决于UHPC的弹性性能;保护层厚度与截面配筋率对UHPC开裂影响十分显著;纵向配筋率越高,纯弯段裂缝分布越密集;当裂缝宽度小于0.2mm时,荷载与最大裂缝宽度关系近似线性;破坏形态为UHPC层受拉断裂。正弯矩作用下,组合板的弹性阶段取决于钢板与UHPC层界面的自然黏结强度;纯弯段裂缝间距几乎与横向钢筋的间距相同;在极限荷载前,荷载与最大裂缝宽度关系近似线性;钢板将纯弯段UHPC最大裂缝宽度有效限制在0.2mm左右;破坏形态为剪跨区栓钉被剪断。按截面换算法计算UHPC的开裂强度为18.1~32.7MPa,满足工程要求;按塑性分析方法计算钢-UHPC组合板的抗弯承载力,与试验值吻合较好。  相似文献   

3.
为建立钢筋UHPC受弯构件的裂缝宽度计算方法,对6根钢筋UHPC梁进行四点抗弯试验,分析试验梁的裂缝发展过程和分布规律,以此为基础评估了现有规范公式计算钢筋UHPC受弯构件裂缝宽度的适用性,给出考虑UHPC抗拉贡献的钢筋UHPC受弯构件的钢筋应力计算方法和裂缝宽度建议计算公式,并通过国内16根钢筋UHPC梁的97组有效裂缝宽度试验结果对给出的裂缝宽度建议公式的适用性进行验证。研究结果表明:①UHPC梁表面裂缝宽度小于0.25mm时,裂缝宽度基本呈线性规律扩展,裂缝数量不断增加,裂缝间距逐渐减小;裂缝宽度超过0.25mm后,裂缝宽度迅速扩展并形成主裂缝,裂缝数量基本不变,裂缝间距趋于稳定,裂缝分布密而细,呈现出多元开裂现象。②直接采用GB 5010-2010规范和CECS 38-2004规范的裂缝宽度公式计算钢筋UHPC受弯构件的裂缝宽度误差较大。③基于UHPC材料特性,提出考虑UHPC抗拉作用的钢筋UHPC受弯构件开裂截面的钢筋应力计算方法,可较好地预测钢筋UHPC受弯构件开裂截面的钢筋应力。④结合试验数据和分析,对GB 50010-2010规范中平均裂缝间距、钢筋应变不均匀系数、构件受力特征系数进行修正,给出钢筋UHPC受弯构件裂缝宽度计算公式,修正后的建议公式计算值与文章试验值吻合良好,且与法国UHPC规范公式预测结果相比离散性更小。⑤建议公式的裂缝宽度计算值与收集的裂缝宽度试验数据库的试验值之比的平均值为0.99,标准差为0.19,表明建议公式适用性良好,可为UHPC结构设计规范的编制提供参考。  相似文献   

4.
针对上承式板桁组合桁梁桥中普通混凝土桥面板抗裂性能差的问题,提出了钢-钢纤维混凝土组合桥面板。为研究该组合桥面板的轴拉力学性能、抗裂性能,设计了3种不同形式桥面板的轴拉性能对比试验,包括纯钢纤维混凝土桥面板、平钢板-钢纤维混凝土组合桥面板及球扁钢肋加劲的钢-钢纤维混凝土组合桥面板。测试了钢纤维混凝土初始开裂荷载、裂缝随轴向拉力的变化、桥面板的变形、承载力等。结果表明:采用钢纤维混凝土的桥面板在轴向拉力作用下,混凝土开裂特征为多条细微裂缝,与常规的混凝土板开裂特征不同;纯钢纤维混凝土桥面板在轴向拉力作用下的破坏形态为桥面板中的纵向钢筋在连接处破坏,平钢板-钢纤维混凝土组合桥面板及球扁钢肋加劲的钢-钢纤维混凝土组合桥面板的破坏形式为钢板屈服。不同形式的桥面板在正常使用状态下的受力性能各不相同,总体上随着底部钢板面积的增加,桥面板的受力性能更加优异;当纵向钢筋应力水平为100 MPa时,平钢板-钢纤维混凝土组合桥面板和球扁钢肋加劲的钢-钢纤维混凝土组合桥面板所承载的轴拉力分别是纯钢纤维混凝土桥面板的4倍和6.7倍。  相似文献   

5.
武汉军山长江大桥在服役17年后,桥面板出现了严重的疲劳开裂问题,难以修补,为此提出一种钢桥面板不修补,上铺带横向钢板条的UHPC桥面加固方案。以军山长江大桥为研究背景,应用子模型技术对比计算了钢面板重度开裂时纯钢梁和加固后钢面板的应力状态;制作了双层钢筋网+UHPC的传统轻型组合桥面结构与钢板条+UHPC及三层钢筋网+UHPC两类新型加固结构,开展了横向抗弯静力试验及疲劳试验。研究结果表明:采用UHPC加固技术后,正交异性钢桥面的疲劳应力大幅度下降,其中钢面板-U肋焊趾处的横向拉应力沿纵、横桥向的分布降幅达78.8%~86.4%;UHPC拉应力方面,由于钢面板不修补,UHPC层下缘拉应力高达12.9MPa,UHPC层下缘布置80mm宽间距200mm的钢板条后,其底面名义开裂应力可达43.2MPa,远高于设计拉应力,钢板条+UHPC的钢桥面加固方案经过应力幅22MPa的1000万次疲劳试验,UHPC层具备800万次疲劳寿命(裂缝宽度小于0.05mm),且刚度无折减,因此可作为永久结构层与重度开裂的钢桥面构成轻型组合桥面结构,经UHPC加固后,原钢桥面的疲劳裂缝有望不再发展。  相似文献   

6.
蒋炜 《江西建材》2023,(1):69-70
为缓解钢-UHPC组合桥面板易开裂的问题,文中设定装配式钢-UHPC组合桥面板,并对其湿接缝轴拉性能进行研究:在试验室中完成试件制备,并应用轴拉实验装置对其性能进行测定分析。实验结果表明,装配式钢-UHPC组合桥面板轴拉性能高于基础施工桥面板与钢-UHPC组合桥面板,可对外界荷载进行平均分配,进一步缓解桥面开裂问题。  相似文献   

7.
针对目前UHPC键齿胶接缝抗剪性能试验研究仍较为匮乏的现状,文章开展17个UHPC单键齿及多键齿胶接缝试件的直剪试验,主要试验参数包括钢纤维掺量(1%~3%)、键齿深度(40~60mm)及侧向预应力(4~13MPa)等,并研究分析以上参数对UHPC键齿胶接缝直剪性能的影响。直剪试验结果发现,UHPC单键齿胶接缝均表现为阳键齿根部剪断的剪切破坏且侧向压应力对剪切主裂缝角度存在一定影响,而多键齿胶接缝的剪切破坏则主要存在同步和分步剪切破坏两种模式;在侧向应力为4~10MPa时,UHPC单键齿胶接缝的抗剪强度为19.05~33.04MPa,而多键齿接缝的抗剪强度为17.14~22.42MPa;键齿胶接缝的抗剪强度均随UHPC钢纤维掺量的增加而增大,且钢纤维掺量从1%到2%时抗剪承载力提升效果更为明显。此外,基于试验数据提出UHPC多键齿胶接缝的抗剪折减系数及抗剪承载力计算公式;结果表明,UHPC多键齿胶接缝的抗剪折减系数试验平均值为0.85。  相似文献   

8.
文章以预制UHPC板与钢板采用环氧树脂黏结剂连接的组合结构为对象,开展了连接界面抗剪与抗拉的试验研究。试验结果表明,试件中的环氧树脂黏结剂和UHPC材料本身均保持完好;破坏位置,抗剪试件为黏结剂与钢板交界面,抗拉试件为黏结剂与UHPC的交接面;破坏性质为脆性,交接面出现滑移或分离后快速丧失承载力。抗剪强度受黏结面积影响不大,实测值平均值2.59MPa,抗剪强度设计值为1.36MPa。抗拉强度与黏结面积有关,当试件尺寸由160mm增大至200mm,实测值分别为2.74MPa和1.86MPa,降幅超过30%,抗拉强度设计值为0.78MPa。UHPC中钢纤维掺量在1%~2%范围内对抗拉黏结强度影响可忽略。建立了钢-UHPC组合板有限元模型进行受力分析。分析表明,在轮载作用下,黏结层以受剪为主,沿横桥向最为不利;最不利荷载工况的最大剪应力和竖向拉应力分别1.11MPa和0.15MPa,均低于黏结剂抗剪和抗拉强度设计值。根据试验和实例分析结果,考虑到黏结剂连接脆性破坏特性,建议重视胶结界面的处理,重点关注抗剪强度问题。  相似文献   

9.
为方便布置体内预应力束和进一步改善桥面板受力状态,对大跨单向预应力UHPC (Ultra-high Performance Concrete)连续箱梁桥的桥面体系进行优化设计,提出新型正交异性UHPC矮肋板桥面体系方案。以广东省某桥为工程背景,进行了基于正交异性UHPC矮肋板桥面体系方案的UHPC箱梁结构试设计并开展相关的试验研究。结果表明:①与矩形桥面板方案相比,优化的正交异性UHPC箱梁矮肋板桥面体系自重可减少17.0%,并可在矮肋板纵肋处方便地布置体内束;与华夫桥面板方案相比,可在不明显增加桥面体系自重的前提下,大幅减小桥面板的纵向应力,降幅可达46.8%;②基于正交异性UHPC矮肋板桥面体系的UHPC箱梁方案试设计整体计算满足受力要求,桥面体系计算中标准组合作用下桥面板最大纵向拉应力2.66MPa,横隔板最大横向应力6.09MPa;③试验及计算结果表明,矮肋板试件初裂名义应力8.84MPa,抗裂设计名义应力限值10.70MPa,UHPC箱梁横隔板上弦板底面横向应力达到8.43MPa时仍处于线弹性受力阶段,表明试设计方案能满足设计要求。  相似文献   

10.
为了研究活性粉末混凝土构件抗裂性能,制作了两根预应力吊车梁进行试验,得到吊车梁在各级荷载作用下裂缝开展图,通过分析梁受力至破坏整个过程,获得开裂弯矩,建立受拉区裂缝宽度与裂缝间距的计算公式。研究结果表明:①RPC梁在计算开裂弯矩时,应该考虑RPC和钢纤维的拉结作用,并在此基础上建立开裂弯矩计算公式;②钢纤维对裂缝宽度展开有阻滞作用,活性粉末混凝土的延性比普通混凝土更好,其裂缝宽度计算公式可以在无粘结预应力技术规程公式的基础上乘以一个相应的折减系数α=0.8;③考虑RPC抗拉强度贡献,裂缝间距可以按照普通混凝土计算,但须乘以一个α=0.75左右的修正系数。  相似文献   

11.
为研究钢-UHPC轻型组合桥面结构的裂缝特征,并评估现有规范公式对钢-UHPC轻型组合桥面结构裂缝宽度计算的适用性,综合考虑配筋率、保护层厚度、UHPC层厚度和栓钉间距4个因素,对40个钢-UHPC组合板进行正交试验。试验结果表明:未配筋钢-UHPC组合构件裂缝数量较少,且开裂后裂缝发展较快,密集配筋钢-UHPC组合构件裂缝细而密,在裂缝宽度为0.15mm之前,荷载-最大裂缝宽度曲线大致呈直线,钢筋屈服后,裂缝发展较快,当裂缝宽度达到0.2mm以后,裂缝数量基本趋于不变;配筋率和保护层厚度对开裂应力和平均裂缝间距的影响较大,UHPC层厚度对其影响不大。根据现有规范公式计算钢-UHPC组合结构裂缝宽度过于保守,文中根据钢-UHPC组合桥面结构的特点和裂缝扩展特征,提出钢筋应力的计算方法,计算结果和试验实测结果吻合较好;在现有规范公式的基础上,对平均裂缝间距计算公式和钢筋应变不均匀系数计算公式进行了修正,给出钢-UHPC轻型组合结构最大裂缝宽度建议公式,建议公式的计算值和试验值吻合较好。  相似文献   

12.
钢-UHPC组合桁式拱桥的提出,有望解决特大跨径拱桥造价高、难以施工等难题。对1000m钢-UHPC组合桁式拱桥拱肋与腹杆关键节点的受力性能进行了研究,计算表明,在荷载基本组合作用下节点拉、压杆的轴力均超过10000kN,为保证节点处钢和UHPC两种材料牢固结合,通过节点受力分析和优化研究,提出了一种带混合连接件钢接头的UHPC箱型拱肋与钢腹杆新型节点连接构造。对最不利受力的节点制作了1∶5缩尺模型,不考虑箱型拱肋底板和腹板对节点受力的贡献,开展了平面三向加载试验和抗拔试验。试验结果表明:平面三向加载试验中节点的破坏模式为UHPC拱肋一侧开裂,另一侧压溃,但节点连接保持完好;抗拔试验中节点的破坏模式为UHPC拱肋沿钢接头的轮廓剪切破坏;平面三向加载试验中,钢腹杆的极限荷载是设计荷载的2.72倍,且UHPC拱肋的名义开裂应力为13.36MPa,是设计应力的1.85倍,表明节点的承载能力和抗裂性能满足设计要求;钢接头与UHPC拱肋结合面的抗剪性能和抗拔性能满足正常使用极限状态和承载能力极限状态的要求。  相似文献   

13.
利用声发射无损探伤技术实时监测三种类型超高性能混凝土(Ultra High Performance Concrete, 简称UHPC)轴拉试验过程中内部损伤点的形成和演化过程,同时通过裂缝观测仪量测UHPC拉应变到达2000με时的缝宽。与低应变强化UHPC和应变软化UHPC相比,高应变强化UHPC具有高抗拉强度和“类金属”拉伸应变强化性能,在强化段区间内通过多点微裂纹均布开展的形式来平衡等量变形,表现出优异的裂缝宽度控制能力。气体渗透测试证明高应变强化UHPC抗气渗性能优异,且拉应变达到2000με后即刻卸载状态下的抗气渗性能仍要优于未受荷C50混凝土。基于高应变强化UHPC这些特性,将其应用于桥梁结构的高应力区或其他需要高抗裂性能的部位将是预应力混凝土之外的新方案,例如钢-UHPC轻型组合结构、斜拉桥的桥塔锚固区。  相似文献   

14.
Steel and steel-concrete composite girders are two types of girders commonly used for long-span bridges. However, practice has shown that the two types of girders have some drawbacks. For steel girders, the orthotropic steel deck (OSD) is vulnerable to fatigue cracking and the asphalt overlay is susceptible to damage such as rutting and pot holes. While for steel-concrete composite girders, the concrete deck is generally thick and heavy, and the deck is prone to cracking because of its low tensile strength and high creep. Thus, to improve the serviceability and durability of girders for long-span bridges, three new types of steel-UHPC lightweight composite bridge girders are proposed, where UHPC denotes ultra-high performance concrete. The first two types consist of an OSD and a thin UHPC layer while the third type consists of a steel beam and a UHPC waffle deck. Due to excellent mechanical behaviors and impressive durability of UHPC, the steel-UHPC composite girders have the advantages of light weight, high strength, low creep coefficient, low risk of cracking, and excellent durability, making them competitive alternatives for long-span bridges. To date, the proposed steel-UHPC composite girders have been applied to 14 real bridges in China. It is expected that the application of the new steel-UHPC composite girders on long-span bridges will have a promising future.  相似文献   

15.
研制新型的含小型粗骨料UHPC板,提升传统大跨径组合梁斜拉桥普通混凝土桥面板的抗弯性能。通过对含小型粗骨料UHPC进行基本材料性能研究,以及对含小型粗骨料UHPC板试件进行抗弯试验,材性试验探究含小型粗骨料UHPC材料的本构关系、弹性模量和终凝后的干燥自收缩等,发现在UHPC中添加小型粗骨料后,UHPC在抗压性能方面得到提高,减小终凝后的干燥自收缩,但会降低一定的抗弯拉强度和韧性;含小型粗骨料UHPC板试件的抗弯试验探究了试件的荷载 挠度关系与弯矩 最大裂缝宽度关系。发现UHPC板试件具有较高的开裂强度,结构破坏呈现出多裂缝发展。抗弯试验、有限元分析和承载力公式计算结果表明:含小型粗骨料UHPC板具有较好的抗弯、抗裂性能,但计算承载能力时应充分考虑添加小型粗骨料后对结构拉伸性能降低的影响。  相似文献   

16.
为综合解决正交异性钢桥面板疲劳开裂和桥面铺装易损两大难题,提出一种由波形顶板、超高性能混凝土(ultra-high-performance concrete,UHPC)结构层和改进螺旋线(modified clothoide,MCL)形组合销所构成的新型波形顶板-UHPC组合桥面结构.设计2类共12个足尺模型,对所提出...  相似文献   

17.
钢-超高性能混凝土(UHPC)组合板是将钢板与UHPC通过连接件组合成整体,具有高强、高延性、抗开裂、施工便利等特性,可应用于桥面板、防护工程等结构中.由于钢-UHPC组合板相对较薄且往往承受集中荷载,因此需要对其抗冲切性能进行重点研究.通过变化连接件参数、UHPC厚度、钢板厚度和加载区边长,完成了14块板件在集中荷载...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号