首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究Al含量对高熵合金AlFeCrCoNi微观组织和力学性能的影响,通过真空电弧炉熔炼制备出AlxFeCrCoNi高熵合金,采用X射线衍射仪、金相显微镜和扫描电镜对合金微观组织进行分析,利用维氏硬度计、拉伸试验机对合金力学性能进行研究.研究结果表明:随着Al含量的升高,强度和硬度不断提高,显微组织由胞状树枝晶转变为柱状树枝晶.当x=0.4时,高熵合金的性能最佳;当x=0.5时,出现了Al-Ni固溶体导致塑性下降,使材料从单一的面心立方晶格(FCC)转变为FCC和少量体心立方晶格(BCC).  相似文献   

2.
为了研究AlFeCuCrCoMo_x系高熵合金的组织性能,利用等离子弧堆焊方法制备了AlFeCuCrCoMo_x系高熵合金,并测试了其硬度、耐磨性与热膨胀性能.结果表明,高熵合金组织为枝晶和枝晶间组织.当Mo含量较低时,高熵合金主要组织为单一BCC结构.随着Mo含量的增加,其组织逐渐转变为BCC+FCC结构.当Mo含量为1. 5 mol时,高熵合金重新转变成简单BCC结构.随着Mo含量的增加,高熵合金的硬度和磨损量总体上呈现先升高后降低的趋势.当Mo含量为1. 5 mol时,高熵合金的硬度和磨损量达到最大.  相似文献   

3.
为改善CoFeNiMn高熵合金的力学性能,文中采用电弧熔炼和铜模喷铸法制备了不同Ti、C含量的CoFeNiMn(TixC100-x)0.25 (x分别为20,30,40,60,70,80)高熵合金。利用X射线衍射仪(XRD)、扫描电镜(SEM)、万能试验机等检测并分析了CoFeNiMn(TixC100-x)0.25合金的显微组织与力学性能。研究结果表明:当x=20时,合金组织呈典型的树枝状,未发现TiC颗粒存在;当x≥30后,合金结构由FCC和TiC两相所组成,TiC颗粒均匀的分布于合金内部;添加Ti、C元素后,CoFeNiMn(TixC100-x)0.25合金仍然保持良好的塑性,随合金中x值的增加,合金的屈服强度在x=20时为302 MPa,x=30时增加至370 MPa, x=80时则减小至204 MP;而合金的硬度则先减小后增加,x=20时硬度为297 HV0.3...  相似文献   

4.
为了研究铸态和烧结态AlCoCrFeNi高熵合金在模拟海水介质下的电化学腐蚀性能,采用真空电弧熔炼和放电等离子烧结工艺制备AlCoCrFeNi高熵合金,分别采用X射线衍射仪(XRD)和光学显微镜(OM)分析其相结构和微观组织,采用电化学工作站对其进行电化学试验测试。研究结果表明:AlCoCrFeNi铸态合金组织呈现等轴晶形貌,物相为单一BCC结构;烧结态合金组织呈球形形貌,在900℃的烧结温度下,除了BCC相,还出现极少量的B2相以及FCC相。烧结态和铸态自腐蚀电位分别为-0.535 4V和-0.667 6V,自腐蚀电流密度分别为2.914 9×10~(-5) A·cm~(-2)和2.150 4×10~(-5) A·cm~(-2),铸态合金的钝化区比烧结态宽。2种合金均只出现一个容抗弧,且铸态合金的容抗弧半径远大于烧结态合金,表明铸态合金的耐蚀性优于当前烧结温度下的烧结态合金。  相似文献   

5.
为了分析Cu元素添加对高熵合金显微组织与微观性能的影响,采用真空电弧熔炼炉制备AlCrFeNi2Cu=1.2,1.4,1.6,1.8)高熵合金,并利用扫描电子显微镜、X射线衍射仪、硬度计和压缩试验机对高熵合金的显微组织和力学性能进行测试.结果表明,AlCrFeNi2Cu=1.2,1.4,1.6,1.8)高熵合金主要由简单FCC相(富Fe-Cr相)与BCC相(富Al-Ni相)组成.随着Cu含量的增加,FCC相数量增加,组织中枝晶变得致密,但当x增加到1.8时,晶粒又变得粗大起来.Cu元素主要富集于枝晶间,随着Cu含量的增加,Cu元素呈现聚集趋势并包裹着树枝晶,当x增至1.8时,上述偏聚包裹现象更为明显.高熵合金的压缩性能和硬度均随Cu元素的添加呈现先上升后下降的趋势.当x为1.6时,高熵合金综合性能最佳,其抗压强度、屈服强度、塑性应变量和维氏硬度分别为2 256 MPa、891 MPa、35.6%和372 HV.x(xx(x  相似文献   

6.
为了研究一种能够吸收γ射线的含W合金的性能,按照等摩尔比设计了一种FeTiNbMoW五组元高熵合金.利用X射线衍射仪、扫描电子显微镜、能谱仪、显微硬度计、密度仪和万能力学试验机对合金的晶体结构、微观组织、成分、硬度、密度和压缩性能进行了分析.结果表明,FeTiNbMoW高熵合金组织由简单BCC固溶体基体和分布其上的少量金属间化合物组成.BCC结构的实际晶格常数为0.315 5 nm,组织形貌为典型枝晶组织.枝晶硬度和枝晶间硬度分别为830.05和793.04 HV.合金的实测密度为10.7 g/cm3,略高于其理论值10.21 g/cm3.室温下合金的抗压强度和对应塑性应变分别为604 MPa和3.19%.合金呈粉末性断裂,其断裂机制为解理断裂.  相似文献   

7.
为了分析Cu元素添加对高熵合金显微组织与微观性能的影响,采用真空电弧熔炼炉制备AlCrFeNi_2Cu_x(x=1. 2,1. 4,1. 6,1. 8)高熵合金,并利用扫描电子显微镜、X射线衍射仪、硬度计和压缩试验机对高熵合金的显微组织和力学性能进行测试.结果表明,AlCrFeNi_2Cu_x(x=1. 2,1. 4,1. 6,1. 8)高熵合金主要由简单FCC相(富Fe-Cr相)与BCC相(富Al-Ni相)组成.随着Cu含量的增加,FCC相数量增加,组织中枝晶变得致密,但当x增加到1. 8时,晶粒又变得粗大起来. Cu元素主要富集于枝晶间,随着Cu含量的增加,Cu元素呈现聚集趋势并包裹着树枝晶,当x增至1. 8时,上述偏聚包裹现象更为明显.高熵合金的压缩性能和硬度均随Cu元素的添加呈现先上升后下降的趋势.当x为1. 6时,高熵合金综合性能最佳,其抗压强度、屈服强度、塑性应变量和维氏硬度分别为2 256 MPa、891 MPa、35. 6%和372 HV.  相似文献   

8.
为了探讨C和Cu元素对Al_(0.3)CoFeNi高熵合金微观组织及性能的影响,采用非自耗型真空电弧熔炼法制备了Al_(0.3)CoFeNi,Al_(0.3)CoFeNiC_(0.1),(Al_(0.3)CoFeNi)_(99.9)Cu_(0.1)和(Al_(0.3)CoFeNiC_(0.1))_(99.9)Cu_(0.1)4种成分的高熵合金。运用X射线衍射仪测量合金的晶体结构,采用扫描电镜和透射电镜观察合金的表面形貌和微观组织,利用万能试验机和维氏显微硬度计分别测试合金的压缩力学性能和显微硬度。试验结果表明:Al_(0.3)CoFeNi高熵合金为单一的FCC结构,分别添加1%C和0.1%Cu(原子百分比y/%)均未改变其晶体结构,但合金中析出了纳米相L12相,且0.1%Cu的添加会使L12相的尺寸减小。仅添加1%C时,L12相的颗粒尺寸约为30nm,再添加0.1%Cu后,L12相的颗粒尺寸减小到10nm。力学性能测试结果表明,(Al_(0.3)CoFeNiC_(0.1))_(99.9)Cu_(0.1)合金的综合力学性能最好,其压缩屈服强度、抗压强度、压缩率和显微硬度分别可达为974MPa、2532 MPa、51.9%和511.7HV。  相似文献   

9.
采用3道搅拌摩擦加工(FSP)方法将Al2O3陶瓷颗粒添加到ZL102铝合金中制备Al2O3增强铝基复合材料,研究复合材料的微观组织、力学性能和磨损性能。结果表明,经过搅拌摩擦加工后,铝合金基体组织得到了明显细化,Al2O3颗粒在铝合金中分散均匀,与基体结合紧密。搅拌摩擦加工制备的Al2O3颗粒增强铝基复合材料,其硬度比基体铝合金提高了17.1%,抗拉强度提高了29.6%,达到179.36MPa,呈塑性断裂特征。同时,该复合材料具有较好的耐磨损性能,磨损率相对基体铝合金降低36.4%。  相似文献   

10.
以Fe49Co25Ni20Ti6中熵合金为研究对象,通过共析转变,获得层片状共析组织,采用扫描电子显微镜、透射电子显微镜及摩擦磨损试验研究了珠光体组织的形成、特征及耐磨性能。结果表明,中熵合金在550℃发生共析转变,形成由体心立方(BCC)和Ni3Ti构成的层片状共析组织,层片间距在80~100 nm;冷轧形变量与珠光体组织的形成呈正相关,经过85%轧制后,样品很短时间内达到峰时效,而且可以显著提升合金的维氏硬度,峰时效维氏硬度(HV)为(813±24)。摩擦磨损试验结果表明,85-CR和85-CR-550样品的磨损率分别为1.07×10-4 mm3/(N·m)和2.4×10-5 mm3/(N·m),85-CR-550样品的耐磨性能要高于85-CR,这主要得益于珠光体组织的产生。  相似文献   

11.
本文采用机械球磨、冷压成型和真空烧结法制备了碳含量不同的非等原子比Fe70Co7.5Cr7.5Ni7.5V7.5中熵合金,并对合金的组织演变、力学性能和耐磨损性能进行了研究。Fe70Co7.5Cr7.5Ni7.5V7.5合金以体心立方结构(bcc)为基且内部有σ析出相。加入4 at%和8 at%的碳后,合金相组成分别转变成bcc+MC+σ和bcc+MC+M23C6。合金力学性能和耐磨损性能随基体内碳化物的增加而显著提升。随碳含量的提高,合金的抗弯强度和硬度分别从1520 MPa和HRC 57.2提高到3245 MPa和HRC 61.4。并且,合金的主导磨损机制从黏着磨损转变为磨粒磨损。由于均匀分布的微米级碳化物和析出的纳米级碳化物,Fe64.4Co6.9Cr6.9  相似文献   

12.
采用X—Ray衍射仪、金相显微镜、室温压缩测试、显微硬度测试手段,研究了AlCoNiCrFe高熵合金在三种不同凝固速率状态下形成合金的显微组织和力学性能影响。结果表明:AlCoNiCrFe高熵合金经不同凝固速率后因高熵效应及元素扩散困难而形成简单的BCC晶体结构,合金的晶格常数随凝固速率的升高而增大。凝固速率越高合金的组织变得越细小,喷铸后合金生成梅花状树枝晶。合金的压缩强度、硬度随凝固速率升高而增大,喷铸成直径为2mm的合金其综合力学性能最好,其硬度比母合金锭提高13.6%,其塑性达到最大38.1%。  相似文献   

13.
主要研究了添加不同质量分数的氧化铈(CeO2)所制备成的LZ91合金复合材料的微观组织以及显微硬度。X射线衍射(XRD)证明了铸态LZ91合金α-Mg、β-Li相以及MgZn2的存在,随着CeO2的加入,复合材料LZ91合金的相组成发生了改变。对显微组织的研究发现,添加不同质量分数的CeO2,影响了α-Mg的面积分数(Sα)和α-Mg晶粒大小,当质量分数为3%时面积分数最小为27%,晶粒最小值为58μm;同时观察到微观结构中的相组成发生了MgZn2的消失和MgLiZn的生成,发现CeO2的加入改变了合金的凝固方式。利用纳米压痕方法对材料的硬度进行表征发现,随着CeO2的添加,显微硬度逐渐降低。  相似文献   

14.
高熵合金突破传统合金设计思想,依靠近等摩尔比、不低于5种组元混合形成具有远低于平衡相所预测的相数和简单的固溶体结构,从而有可能冲破传统金属材料的性能极限。为了研究多主元合金元素的物相形成机理与显微组织结构对宏观摩擦磨损性能的影响,采用非自耗电弧熔炼技术制备了等摩尔比的Al Co Cr Cu Fe多主元高熵合金。用X射线衍射仪、扫描电子显微镜、能谱分析仪、显微硬度计和摩擦磨损试验机测试了Al Co Cr Cu Fe合金的物相结构、显微组织与摩擦磨损性能。研究发现:Al Co Cr Cu Fe高熵合金的显微组织为典型的树枝晶,由简单的BCC相和FCC相构成,且BCC相和FCC相的各衍射峰均普遍较宽。在干摩擦条件下,Al Co Cr Cu Fe/GCr15摩擦副的摩擦系数随摩擦时间增大呈先升高后降低再稳定的过程,其磨损机制由剥层磨损向氧化磨损转变,其平均摩擦系数为0.55,质量损失率为1.44%。结果表明:晶间为Cu元素富集区域;枝晶区域为调幅分解的网格层状结构;枝晶边界附近有纳米颗粒析出。Cu元素晶间富集主要是由于Cu与其他元素的混合焓、结合能力、互溶性、熔点等差异较大引起的;枝晶区域的调幅分解层状结构则主要是因为原子尺寸因素产生的共格应力与弹性交互作用抑制了组织长大;枝晶边界附近的纳米颗粒析出则由迟滞扩散效应、金属遗传性与工艺过程所决定。BCC相和FCC相衍射峰变宽是由于各组元原子半径差较大、各元素等摩尔比存在且混合焓不同、合金内部有较大残余应力以及晶粒尺寸小范围广所致。  相似文献   

15.
以光学显微镜(OM)、X射线衍射分析(XRD)、扫描电子显微镜(SEM)和电子探针(EPMA)方法分析涂层相组织结构和显微形貌,采用硬度测试仪及滑动磨损机测试涂层硬度及耐磨性能.结果表明,涂层中原位合成了TiB和TiN强化相颗粒,分别呈现针棒状形貌组织和等轴晶形貌组织;激光功率对组织形貌影响较大,随着激光功率的提高,熔覆层的硬度和耐磨性能呈上升的趋势;母材的磨损机制主要为疲劳磨损,而熔覆层金属的磨损主要由疲劳磨损和磨粒磨损共同作用,其中磨粒磨损占主体作用.  相似文献   

16.
为了研究Ti元素对高熵合金的组织和性能的影响,采用放电等离子烧结方法制备了CrTeCoNiTix(x=0.2,0.4,0.6,0.8,1.0)多组元高熵合金。用OM、XRD和SEM等技术分析了合金的微观组织,测试了CrTeCoNiTix高熵合金的硬度、压缩强度及耐腐蚀性能。研究结果表明:不同Ti含量的高熵合金组织形态简单,物相主要为面心立方相。随着Ti含量的增加,高熵合金硬度逐渐增加,最大值达到672.59HV;压缩强度也随之增加,最大值为690.28MPa。在H_2SO_4中的耐腐蚀性随Ti含量增加而降低。  相似文献   

17.
采用电弧熔炼法制备了4个铸态为FCC+B2共晶组织和B2单相的Al-Co-Cr-Fe-Ni高熵合金,分析了其相变点,并研究了600,800,1000℃下真空退火10 d对这些合金显微组织及硬度的影响.研究表明:AlCoCrFeNi2.1和Al0.75 Co1.25 CrFeNi合金的共晶反应温度分别为1344℃和1359℃.600~1000℃退火10 d对AlCoCrFeNi2.1高熵合金的显微组织无明显影响;而随着退火温度的增加,Al0.75Co1.25CrFeNi合金中共晶组织的两相层片间距增加.随着Al含量的增加,AlxCo2-xCrFeNi合金的B2相稳定性增加,合金的固相线温度明显升高,显微硬度也明显增加.铸态为B2单相的AlCoCrFeNi合金加热到605.7℃以上会转变为组织细小的FCC+B2+σ三相;继续加热到906.8℃以上,σ相消失,FCC相呈大块状分布.而Al1.75Co0.25CrF-eNi合金需要加热到982.4℃以上才会分解为两种不同成分的B2相.实验发现:退火温度越高,合金的显微硬度越低,这些合金在800℃以下都具有较高的硬度.  相似文献   

18.
为了进一步提高316不锈钢的表面性能,采用类激光熔覆技术在316不锈钢表面制备了Stellite合金沉积层.利用扫描电子显微镜、能谱仪、X射线衍射仪、显微硬度计与销盘磨损试验机,研究了Stellite合金沉积层的微观组织、化学成分、显微硬度及摩擦磨损性能.结果表明,Stellite合金沉积层主要由γ-Co和M_(23)C_6相组成.沉积层组织依附于316不锈钢基体的界面呈外延生长,由界面至表面依次呈平面晶、柱状晶和胞状树枝晶形态,且越靠近表面组织越细小.Stellite合金沉积层的最高硬度可达650 HV.在摩擦磨损过程中摩擦系数随着法向载荷的增大而减小,磨损机制主要为黏着磨损、磨粒磨损和氧化磨损.  相似文献   

19.
采用等离子喷涂技术和水热反应合成法制备Al2O3–13%Ti O2(AT13)陶瓷涂层和AT13/WS2复合涂层,利用多功能摩擦学试验机和原子力显微镜,研究原位合成的WS2对AT13陶瓷涂层表面摩擦磨损性能的影响,且利用场发射扫描电子显微镜(FESEM)、能谱仪(EDS)和X射线衍射仪(XRD)对AT13/WS2复合涂层物相组成和微观形貌进行分析,探讨材料的磨损机理。结果表明:通过水热反应,可将WS2粉末合成在AT13涂层表面微裂纹和孔隙中,制得AT13/WS2复合涂层;在干摩擦测试条件下复合涂层的摩擦系数(0.2左右)相对AT13涂层(0.7左右)显著降低;在微观尺度下AT13涂层横向摩擦力(0.5 V)明显大于AT13/WS2复合涂层(0.1 V);严重的磨粒磨损和脆性剥落是AT13涂层磨损的主要原因,WS2的引入可改善AT13涂层的磨损情况,AT13/WS  相似文献   

20.
为了研究AlFeCrCoNi增强铝基复合材料的微观组织与退火状态下的力学性能,文中以机械搅拌法制备了AlFeCrCoNi/Al,利用光学显微镜和场发射扫描电镜对其宏观及微观形貌进行了观测;采用X射线衍射仪对其物相进行了表征与分析;利用布氏硬度机、阿基米德排水法和电子万能试验机对其力学性能进行了测量与分析。研究结果表明:在颗粒增强金属基复合材料的搅拌铸造制备过程中,实现颗粒均匀分布的一个关键因素是选择适当的增强颗粒含量,而增强颗粒的质量分数控制在10%以下时最为理想;随着高熵合金质量分数的增加,复合材料的致密度明显减小,而布氏硬度明显增加;质量分数为5%的AlFeCrCoNi增强铝基复合材料随着退火时间增加,抗拉强度逐渐增加;AlFeCrCoNi为增强相制备的Al基复合材料的断裂类型为韧性断裂,断裂机理为微孔聚集型断裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号