首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
李家科  刘磊  刘欣 《无机材料学报》2011,26(12):1314-1318
利用非自耗电弧熔融技术制备的22Ti-78Si (wt%)高温共晶钎料实现SiC陶瓷连接. 采用SEM、材料试验机研究了工艺参数对钎焊接头的组织结构、强度和断口形貌的影响规律. 结果表明: 在钎焊温度1380~1420℃、保温时间5~20min、钎料厚度50~200 μm条件下, 均能实现SiC陶瓷连接, 在1400℃、保温时间10min和钎料厚度100μm的条件下, SiC/22Ti-78Si/SiC接头剪切强度最大值可达125MPa.  相似文献   

2.
针对Al熔液在850℃以下不润湿Al2O3而难以直接钎焊的困难, 本工作研究了溅射Al对Al2O3的“润湿”作用, 提出了一种采用溅射Al基薄膜作为钎料直接钎焊Al2O3的方法。结果表明, 这种方法可以在不满足熔态Al润湿条件的680℃实现Al和Al-Cu合金对Al2O3的直接真空钎焊, 并且仅需0.1 Pa的真空度。所获得的Al/Al2O3的接头剪切强度达到115 MPa, Al-1.6at% Cu合金钎焊接头的剪切强度可提高到163 MPa, 当钎料中的Cu含量提高至14.3at%后, 钎焊接头中焊缝与陶瓷界面产生Cu的偏聚, 接头的剪切强度因界面断裂降低为127 MPa。并对这种不基于金属熔态润湿钎焊方法的原理进行了分析讨论。  相似文献   

3.
在高真空条件下采用Ti-35Zr-35Ni-15Cu(质量分数/%)钎料对SiC陶瓷进行了钎焊连接,研究了接头界面组织的形成过程以及工艺参数对接头性能的影响。结果表明:钎料与SiC陶瓷发生了复杂的界面反应,生成了多种界面产物。当钎焊温度为960℃,保温时间为10min时,SiC陶瓷侧形成了连续的TiC和Ti5Si3+Zr2Si层,同时Ti5Si3+Zr2Si向钎缝中心生长呈长条状。SiC陶瓷到接头钎缝中心的显微组织依次为:SiC/TiC/Ti5Si3+Zr2Si/Zr(s,s)/Ti(s,s)+Ti2(Cu,Ni)/(Ti,Zr)(Ni,Cu)。钎焊温度为960℃,保温时间为30min时,长条状的Ti5Si3+Zr2Si贯穿了整个接头。钎焊接头强度随着钎焊温度的升高和钎焊时间的延长都呈现先增大后减小的趋势。当钎焊温度为960℃,保温时间为10min时,接头的剪切强度最高,达到了110MPa。  相似文献   

4.
采用BNi-5钎料对SiC陶瓷进行真空钎焊,获得了力学性能良好的SiC钎焊接头,并对焊缝的微观结构和形成过程进行了分析。研究结果表明,Ni基钎料与SiC母材发生反应生成层状界面反应层结构,所形成的SiC钎焊接头钎缝微观形貌可以表述为:SiC母材/石墨+Ni_2Si/Ni_2Si/石墨+Ni_2Si/Cr_3Ni_2SiC/Ni+Cr_3Ni_5Si_2/Cr_3Ni_2SiC/石墨+Ni_2Si/Ni_2Si/石墨+Ni_2Si/SiC母材。所得SiC钎焊接头常温力学性能较好,平均钎焊接头剪切强度可达到124 MPa。Ni基钎料钎焊SiC陶瓷接头的断裂位置位于钎料与陶瓷基体间的界面反应层,主要原因是界面反应层中Ni_2Si和Cr_3Ni_2SiC等脆性化合物在钎焊接头拉伸变形过程中会产生应力集中,在残余钎焊应力的共同作用下钎焊接头发生断裂。  相似文献   

5.
选用Ag-35.5Cu-1.8Ti和Ag-27.4Cu-4.4Ti两种钎料,在880℃/10min钎焊规范下进行了Cf/SiC陶瓷基复合材料的钎焊实验。实验结果表明,钎焊接头中央为典型的Ag-Cu共晶组织,而在钎料与Cf/SiC母材的界面处形成了扩散反应层,Ti在该层中富集。通过界面X射线衍射分析,确定界面存在TiC相,但未检测到Ti-Si相。分析了界面反应机理。接头强度试验结果表明,采用Ag-35.5Cu-1.8Ti钎料获得接头的三点弯曲强度为132.5MPa,而Ag-27.4Cu-4.4Ti对应的接头强度为159.5MPa,分析认为,Ti在钎料中的活性是决定接头性能的关键因素之一,即接头强度随着钎料中Ti活性的提高而呈现增加的趋势。  相似文献   

6.
采用不同铒含量的7组Al-20Cu-9.6Si-xEr钎料分别对SiCp/A356复合材料进行了真空钎焊。利用扫描电镜和能谱分析等方法对接头微观组织进行了观察和分析。通过剪切实验对钎焊接头的抗剪强度进行了测定,并对剪切断口的微观形貌进行了观察。结果表明:添加稀土后,钎焊接头的抗剪强度明显提高。当w(Er)=0%时,钎缝处SiC颗粒聚集严重,接头强度为43.5MPa;当w(Er)=0.05%时,钎缝边界无SiC颗粒的聚集,接头强度最高,达到68.6MPa;当w(Er)=0.1%-0.4%时,钎缝处SiC颗粒聚集趋势减弱,接头强度值在45.3-50.5MPa之间;当w(Er)=0.5%时,SiC颗粒分布在钎缝内部,接头强度明显提高,达到62.2MPa。  相似文献   

7.
蔡颖军  王刚  檀财旺  王秒  赵禹 《材料工程》2021,49(10):72-81
陶瓷与金属由于其差异较大的热膨胀系数易导致接头残余应力较大,研究者们采用添加中间层方式,成功降低了接头残余应力.本工作采用AgCu/泡沫Cu/AgCu复合钎料对ZrB2-SiC陶瓷与Inconel 600镍基合金进行真空钎焊,系统研究了泡沫Cu厚度对钎焊接头组织和性能的影响.结果表明:所获得的钎焊接头无明显缺陷,焊缝均由Agss,Cuss和(Cr,Fe)7 C3三种相组成.剪切性能测试表明:添加泡沫Cu中间层获得的接头性能高于未添加泡沫Cu得到的接头,且随着泡沫Cu厚度的增加,焊缝中泡沫Cu骨架结构增多,钎焊接头强度呈先增大后减小的变化趋势.当泡沫Cu厚度为1 mm时,接头获得最优的剪切强度,达到72.5 MPa.通过ABAQUS有限元分析软件对接头残余应力进行分析,添加泡沫Cu钎焊时,接头金属侧残余应力降低了50.6 MPa,ZrB2-SiC侧降低了110.3 MPa,进一步证明添加泡沫Cu能够有效缓解钎焊接头残余应力.  相似文献   

8.
采用快速甩带技术制备了(Al-10Si-20Cu-0.05Ce)-1Ti(质量分数/%)急冷箔状钎料,并对60%体积分数的SiCp/6063Al复合材料进行真空钎焊实验,然后对钎料及接头的显微组织与性能进行测定和分析。结果表明,急冷钎料的微观组织细小、成分均匀,厚80~90μm,主要包含Al、CuAl2、Si和Al2Ti等相。当升高钎焊温度(T/℃)或延长保温时间(t/min),SiCp/钎料界面的润湿性改善,6063Al基体/钎料间互扩散和溶解作用增强,接头连接质量逐渐提高。当T=590℃、t=30min时,接头抗剪强度达到112.6 MPa;当T=590℃、t=50min时,少量小尺寸SiCp因液态钎料排挤而分散于钎缝,因加工硬化而使接头强度递增7.3%。然而,当T≥595℃、t≥60min时,SiCp偏聚于钎缝,导致接头组织恶化,且剪切断裂以脆性断裂为主。综合考虑钎焊成本与接头强度使用要求,确定最佳钎焊工艺为590℃、30min。  相似文献   

9.
王鹏  高增  程东锋  牛济泰 《材料导报》2017,31(22):75-78, 94
采用快速甩带技术制备了7组(Al-33.3Cu-6.0Mg)-xNi(x=0,0.5,1.0,2.0,3.0,4.0,5.0,质量分数/%)急冷箔状钎料,分别对化学镀Ni-P合金前后的SiCp/A356复合材料进行真空扩散钎焊。通过剪切实验对钎焊接头的抗剪强度进行测定,并利用扫描电镜和能谱分析等方法对接头微观组织进行观察和分析。结果表明,当向Al-33.3Cu-6.0Mg钎料合金中添加不同含量的Ni时,其急冷钎料的固-液相线(504~522℃)变化较小;当w(Ni)=3%且在570℃、保温30min的钎焊工艺下,A356基体/钎料两界面间发生适当的互扩散和溶解现象(585℃时出现溶蚀缺欠),且部分钎料/SiC颗粒的接触界面发生Mg参与的化学反应,接头抗剪强度达到64.97 MPa;而在同种钎焊工艺下,对于化学镀Ni-P合金镀层后的SiCp/A356复合材料,其接头处A356基体/Ni-P合金镀层/钎料等接触界面易于形成富含Al、Ni的致密反应层,接头连接质量显著提高,且w(Ni)=4%时,接头抗剪强度达到79.96 MPa。  相似文献   

10.
采用快凝甩带技术制备了6组不同Ti含量的(Al-10Si-20Cu-0.05Ce)-xTi急冷箔状钎料,并对SiCp/6063Al复合材料进行真空钎焊,然后对钎料及接头的显微组织和性能进行分析。结果表明,急冷箔较常规铸态钎料的组织细小、均匀;固、液相线降低,熔化区间变窄;随着Ti含量的增加,急冷箔中片状Al-Si-Ti金属间化合物相增多,导致钎料脆性增加;6组钎料在复合材料上润湿性较差,但在6063Al合金上润湿性良好。在580℃钎焊温度、保温30min条件下,采用1%Ti含量急冷箔状钎料成功连接了SiCp/6063Al复合材料,钎焊接头组织致密、完整,急冷箔状钎料与6063Al合金基体连接界面可进行充分的冶金结合,且接头剪切强度达到104.9 MPa;钎焊前采用夹具增加接头压力可显著提高接头的连接质量。  相似文献   

11.
通过粗细碳化硅粉体的颗粒级配实现了致密固相烧结碳化硅(S-SiC)陶瓷的增强增韧, 系统研究了粗粉(~4.6 µm)加入量对烧结试样的致密化、微结构与力学特性的影响。结果表明: 当粗粉加入量不超过75wt%时, 可制备出相对密度≥98.3%的致密S-SiC陶瓷, 烧结收缩率低至14.5%;引入的粗粉颗粒产生钉扎作用, 显著抑制了S-SiC陶瓷中异常晶粒生长, 形成细小的等轴晶粒, 进而提高了S-SiC陶瓷的抗弯强度。同时, 粗粉颗粒的引入导致S-SiC陶瓷的断裂方式由穿晶断裂转变为穿晶-沿晶复合断裂, 使得S-SiC陶瓷的断裂韧性增强。对于粗粉引入量为65wt%的S-SiC陶瓷, 抗弯强度与断裂韧性分别为(440±35) MPa与(4.92±0.24) MPa•m1/2, 相比于未添加粗粉的S-SiC陶瓷, 分别提升了14.0%与17.1%。  相似文献   

12.
采用快速甩带技术制备了(Al-10Si-20Cu-0.05Ce)-1Ti(质量分数/%)急冷箔状钎料,并对60%体积分数的SiCp/6063Al复合材料进行真空钎焊实验,然后对钎料及接头的显微组织与性能进行测定和分析.结果表明,急冷钎料的微观组织细小、成分均匀,厚80~90μm,主要包含Al、CuAl2、Si和Al2Ti等相.当升高钎焊温度(T/℃)或延长保温时间(t/min),SiCp/钎料界面的润湿性改善,6063Al基体/钎料间互扩散和溶解作用增强,接头连接质量逐渐提高.当T=590℃、t=30 min时,接头抗剪强度达到112.6MPa;当T=590℃、t=50 min时,少量小尺寸SiCp因液态钎料排挤而分散于钎缝,因加工硬化而使接头强度递增7.3%.然而,当T≥595℃、t≥60 min时,SiCp偏聚于钎缝,导致接头组织恶化,且剪切断裂以脆性断裂为主.综合考虑钎焊成本与接头强度使用要求,确定最佳钎焊工艺为590℃、30 min.  相似文献   

13.
周媛  熊华平  毛唯  陈波  叶雷 《材料工程》2012,(8):88-91,100
采用直接扩散焊和加中间层的扩散焊方法进行了TiAl合金和高温合金异种材料组合的连接实验。在1000℃/20MPa/1h规范下直接扩散焊获得的TiAl/GH2036接头组织中存在大量未焊合的孔洞,接头室温剪切强度平均值仅有16MPa。采用Ti-Zr-Cu-Ni合金作为中间层在935℃加压3MPa保温10min和1h进行了TiAl/GH3536组合接头的液相扩散焊,获得的扩散焊缝中含有Ti3Al,NiTi等多种物相,中间层合金与两侧母材发生作用形成了具有一定厚度的反应层。在935℃/3MPa/1h规范下获得了与两侧母材结合良好的无缺陷扩散焊接头,室温剪切强度达到125MPa。  相似文献   

14.
使用Ag-Cu-Ti合金粉,SiC粉和Zr粉组成的混合粉末钎料,真空无压钎焊再结晶SiC陶瓷与Ti合金,观察Zr加入前后接头连接层组织结构的变化,研究了Zr的作用.结果表明,Zr加入前,连接层主要由Ag、SiC、Cu—Ti、Ti3SiC2、和Ti-Si相组成.Zr加入后,连接层主要由SiC、Ti1-xC、Ti-Si、AgTi和AgCu4Zr相组成.Zr的加入提高了连接层中Ti的活度,使SiC颗粒表面反应层Ti3SiC2转变,生成了Ti1-zC和TiSi相;提高了Ti与SiC颗粒的反应速度,使SiC颗粒减少;促进Ti与Ag的反应,生成了AgTi.Zr的加入导致连接层流动性的改善、连接层与SiC陶瓷界面结合强度的提高和接头热应力的降低,适量Zr的加入使接头剪切强度明显提高(达23.6MPa).  相似文献   

15.
Silicon carbide particles were used as reinforcement in the Ag-26.7Cu-4.6Ti (wt.%) brazing alloy for joining C/C composite to TC4 (Ti-6Al-4V, wt.%). The mechanical properties of the brazed joints were measured by shear strength testing. The effects of the volume percentage of SiC particles on the microstructures of the brazed joints were investigated. It is shown that the maximum shear strength of the joints is 29 MPa using 15 vol.% SiC in the brazing alloy which is greater than that with Ag-26.7Cu-4.6Ti brazing alloy alone (22 MPa). Ti is reacted with SiC particles, forming Ti–Si–C compound in the particle-reinforced brazing alloy. Due to this, more SiC particles in the brazing alloy, the thickness of TiC/TiCu reaction layer near C/C composite decreases. Moreover, SiC particles added to the brazing alloy can reduce the CTE of the brazing alloy which results in lower residual stress in the C/C composite-to-metal joint. Both of the above reasons lead to the increasing of the shear strength of the brazed joints. But excessive SiC particles added to the brazing alloy lead to pores which results in poor strength of the brazed joint.  相似文献   

16.
以两种不同配比Y2O3/Al2O3 (A, 2:3; B, 3:1, 总量15 wt%)为烧结助剂, 通过添加不同质量分数的SiC粉体,反应烧结制备了高强度的氮化硅/碳化硅复相陶瓷。并对材料的相组成、相对密度、显微结构和力学性能进行了分析。结果表明: 在1700℃保温2 h情况下, 烧结助剂A 与B对应的样品中α-Si3N4相全部转化为β-Si3N4; 添加5wt% SiC, 烧结助剂A对应样品的相对密度达到最大值94.8%, 且抗弯强度为521.8 MPa, 相对于不添加SiC样品的抗弯强度(338.7 MPa)提高了约54.1%。SiC能有效改善氮化硅基陶瓷力学性能, 且Si3N4/SiC复相陶瓷断裂以沿晶断裂方式为主。  相似文献   

17.
Dense TiC–Al2O3–Al composite was prepared with Al, C and TiO2 powders by means of electric field-activated combustion synthesis and infiltration of the molten metal (here Al) into the synthesized TiC–Al2O3 ceramic. An external electric field can effectively improve the adiabatic combustion temperature of the reactive system and overcome the thermodynamic limitation of reaction with x < 10 mol. Thereby, it can induce a self-sustaining combustion synthesis process. During the formation of Al2O3–TiC–Al composite, Al is molten first, and reacted with TiO2 to form Al2O3, followed by the formation of TiC through the reaction between the displaced Ti and C. Highly dense TiC–Al2O3–Al with relative density of up to 92.5% was directly fabricated with the application of a 14 mol excess Al content and a 25 V cm−1 field strength, in which TiC and Al2O3 particles possess fine-structured sizes of 0.2–1.0 μm, with uniform distribution in metal Al. The hardness, bending strength and fracture toughness of the synthesized TiC–Al2O3–Al composite are 56.5 GPa, 531 MPa and 10.96 MPa m1/2, respectively.  相似文献   

18.
将Ti合金插层引入(Ti+B_4C)反应原料和Ti合金底板之间,研究Ti合金插层厚度变化对超重力反应连接TiB2基陶瓷/Ti-6Al-4V梯度复合材料界面显微组织与力学性能的影响。热力学计算表明:合成反应的绝热温度远超Ti合金的熔点,可以保证不同厚度的Ti合金插层全部熔化。XRD、FESEM及EDS分析结果表明:在陶瓷和Ti合金底板之间形成梯度界面区,且随着Ti合金插层厚度的增加,梯度界面区的厚度也不断增大。自陶瓷基体至Ti合金底板,TiB_2和TiC_(1-x)的体积分数不断减少,而TiB的体积分数先增加而后减少,最终形成以TiB_2、TiC_(1-x)及TiB陶瓷相尺寸和分布为特征的梯度复合结构。而梯度连接区的硬度分布趋势更加平缓,其剪切强度不断提升。  相似文献   

19.
以α-Si3N4为原料, Y2O3为烧结助剂, 在三种不同的氮气压力(0.12、0.32和0.52 MPa)下烧结制备了多孔氮化硅陶瓷。研究了氮气压力对氮化硅的烧结行为、显微组织和力学性能的影响, 分别通过SEM观察显微组织并统计晶粒的长径比, 通过XRD对物相进行分析, 并对烧结试样进行三点弯曲强度测试。随着氮气压力的提高, 多孔陶瓷的线收缩率降低、气孔率提高, 这是由于低熔点的液相中N含量随氮气压力的提升而增加, 导致了液相粘度提高, 抑制陶瓷致密化。随着氮气压力的提高, 组织中的棒状β-Si3N4生长良好, 晶粒长径比增大, 其原因是高的液相粘度抑制了β-Si3N4形核, 有利于β-Si3N4生长。由于β-Si3N4棒状晶的作用, 陶瓷弯曲强度随氮气压力的升高得到改善, 但是气孔率的升高降低陶瓷的强度。在0.52 MPa的氮气压力下烧结的多孔陶瓷气孔率达58%, 弯曲强度为140 MPa。  相似文献   

20.
目的 添加0.05 mm厚的Ni箔作为中间层,对3 mm厚的TC4钛合金和2A14铝合金进行搅拌摩擦焊,分析Ni对接头力学性能的影响。方法 采用扫描电镜、EDS能谱及XRD衍射等微观表征分析方法,对焊接接头的断口形貌、成分进行分析,探究Ni箔对焊接接头力学性能的影响。结果 由于钛合金和铝合金存在较大的物理化学性能差异,Ti/Al异种金属焊接性较差,界面容易产生TiAl3、TiAl、Ti3Al等金属间化合物,其中脆性相TiAl3对接头性能的影响最大,会导致综合力学性能下降。当加入中间层材料Ni后,由于Ni与Al晶体结构均属于面心立方,因此Ni与Al的扩散系数大于Ti与Al的扩散系数,Ni和Al之间优先形成金属间化合物且弥散分布于焊缝中,从而缩短了Ti与Al之间的相互扩散时间,减少了TiAl3相的生成。结论 在未添加中间层材料时,接头平均抗拉强度为237.3 MPa,约为2A14铝合金母材抗拉强度的56.7%;当添加中间层Ni后,对焊缝中金属间化合物的种类和数量进行了调控,减少了对性能影响最大的TiAl3相的生成,接头平均抗拉强度达到285.3 MPa,为2A14铝合金母材抗拉强度的68%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号