首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
随着各种智能终端数量的爆炸性增长,传统云计算模型无法满足海量数据传输所带来的时延、能耗等要求,因此移动边缘计算(Mobile Edge Computing, MEC)应运而生。在MEC背景下,提出一种离散化的灰狼优化算法,该算法对灰狼的位置向量进行重新定义、设计灰狼个体位置的转换函数及运算规则,并最终实现有效减少系统能量消耗的目标。实验结果表明,基于该算法的交替优化卸载策略,相较于本地计算策略、随机卸载策略,系统能耗分别节约了71.11%及34.17%。通过这种交替求解卸载策略及资源分配的方式,可以在满足用户实时化需求的基础上保证用户的良好使用体验。  相似文献   

3.
刘伟  黄宇成  杜薇  王伟 《软件学报》2020,31(6):1889-1908
云计算和移动互联网的不断融合,促进了移动云计算的产生和发展,但是其难以满足终端应用对带宽和延迟的需求.移动边缘计算在靠近用户的网络边缘提供计算和存储能力,通过计算卸载,将终端任务迁移至边缘服务器上面执行,能够有效降低应用延迟和节约终端能耗.然而,目前针对移动边缘环境任务卸载的主要工作大多考虑单个移动终端和边缘服务器资源无限的场景,这在实际应用中存在一定的局限性.因此,针对边缘服务器资源受限下的任务卸载问题,提出了一种面向多用户的串行任务动态卸载策略(multi-user serial task dynamic offloading strategy,简称MSTDOS).该策略以应用的完成时间和移动终端的能量消耗作为评价指标,遵循先来先服务的原则,采用化学反应优化算法求解,充分考虑多用户请求对服务器资源的竞争关系,动态调整选择策略,为应用做出近似最优的卸载决策.仿真结果表明,MSTDOS策略比已有算法能够取得更好的应用性能.  相似文献   

4.
杨天  杨军 《计算机工程》2021,47(8):37-44
在移动边缘计算(MEC)服务器计算资源有限且计算任务具有时延约束的情况下,为缩短任务完成时间并降低终端能耗,提出针对卸载决策与资源分配的联合优化方法.在多用户多服务器MEC环境下设计一种新的目标函数以构建数学模型,结合深度强化学习理论提出改进的Nature Deep Q-learning算法Based DQN.实验结果...  相似文献   

5.
针对资源受限的移动边缘计算(MEC)卸载问题,提出一种基于遗传算法优化的卸载决策与计算资源分配方法(GAO).建立联合时延、能耗以及卸载费用的系统卸载效益模型,提出最小资源分配阈值;引入改进的遗传算法求解效益最大化问题,针对该问题提出一种两段式的染色体结构和遗传算子.进行仿真实验,对比分析随机卸载决策与平均计算资源分配...  相似文献   

6.
针对移动边缘计算(MEC)中用户任务处理时延与能耗过高的问题,提出了"云-边-端"三层MEC计算卸载结构下的资源分配与卸载决策联合优化策略.首先,考虑系统时延与能耗,将优化问题规划为系统总增益(任务处理时延与能耗相对减少的加权和)最大化问题;其次,为用户任务设置优先级,并根据任务数据量初始化卸载决策方案;然后,采用均衡...  相似文献   

7.
针对现有边缘计算计算卸载算法存在的延迟较大且负载不均衡的问题,提出一种移动边缘计算中基于改进遗传算法的计算卸载与资源分配算法.基于提出的移动边缘计算网络构建系统模型,其中包括能耗、平均服务延迟、执行时间以及负载均衡模型.以能耗、延迟、负载均衡最小化为优化目标,利用改进的遗传算法进行求解,其中采用染色体一维表现形式、交叉和变异算子提高算法的性能.利用iFogSim和Google集群对所提算法进行模拟仿真实验,结果表明,算法种群数量和最大迭代次数的合理值分别是60和25,所提算法得到的计算卸载和资源分配策略在能耗、负载均衡、延迟和网络使用率方面的表现均优于其它算法.  相似文献   

8.
杨天  杨军 《计算机工程》2021,47(2):19-25
为在移动边缘计算服务器计算资源有限的情况下最小化系统总成本,提出一种多用户卸载决策与资源分配策略.优化任务执行位置选择和计算资源分配过程,对基于精英选择策略的遗传算法在编码、交叉、变异等操作方面进行改进,设计联合卸载决策与资源分配的improve-eGA算法.实验结果表明,与All_local、All_offload、...  相似文献   

9.
为了在移动边缘计算(MEC)中最大限度地减少处理用户任务的时延和能耗,改善用户体验,以最小化用户的完成时间和能耗的加权和为目标,在计算资源的约束下研究了多用户、多MEC服务器中的计算卸载问题。针对此问题,考虑卸载决策和资源分配之间存在的依赖关系,首先将原问题解耦为卸载决策和计算资源分配2个子问题。然后,使用鲸鱼优化算法求解卸载决策问题,通过添加非线性收敛因子和惯性权重加快收敛速度;引入反馈机制,防止陷入局部最优,得到更高概率可行的卸载决策;对于资源分配问题使用拉格朗日乘子法得到每个卸载决策下的最佳计算资源分配解。最后,通过多次迭代得到稳定的收敛解。仿真实验结果表明,与其他基准方案相比,最多减少了44.6%的系统开销。  相似文献   

10.
移动边缘计算(MEC)通过将计算和存储资源部署在无线网络边缘,使得用户终端可将计算任务卸载到边缘服务器进行处理,从而缓解终端设备资源受限与高性能任务处理需求之间的冲突.但随着任务卸载规模的不断增加,执行任务所产生的功耗急剧上升,严重影响了MEC系统的收益.建立任务队列动态调度模型,以队列上溢概率为约束构建最大化系统平均...  相似文献   

11.
在移动边缘计算(mobile edge computing, MEC)系统中,用户的卸载策略会影响能耗和计算成本,进而影响用户效益.然而,目前多数研究未考虑边缘服务器随机分布场景中用户的卸载策略和资源请求策略对效益的影响.针对该问题,提出了一种基于改进双重拍卖算法的计算卸载和资源分配策略.首先,该策略将用户与边缘服务器之间的交互过程建模为Stackelberg博弈,并且证明了在该博弈内存在唯一纳什均衡点;其次,计算出用户对于不同服务器的卸载意愿以及计算资源请求量,并将用户与最优服务器进行拍卖;最后,采用遍历法交换上一轮拍卖中部分交易中的用户与服务器,以实现系统整体效益最优.仿真实验结果表明,与其他基准算法相比,所提算法在服务器随机分布场景下提高了33.4%的系统用户总效益,有效降低系统损失.  相似文献   

12.
13.
随着移动互联网和物联网的发展,越来越多的智能终端设备投入到实际使用当中,大量计算密集型和时间敏感型应用被广泛应用,如AR/VR、智能家居、车联网等.因此,网络中的数据流量激增,使得核心网络面临的压力逐渐增大,对网络时延的控制也越来越难,此时云边协同的计算范式作为一种解决方案被提出.针对云边之间的核心网流量控制问题,文中...  相似文献   

14.
在多用户多任务场景下, 使用传统的决策算法去对短时间内接踵而来的任务进行计算卸载决策, 已经不能满足用户对决策效率和资源利用率的要求. 因此有研究提出使用深度强化学习算法来进行卸载决策以满足各种场景下的需求, 但是这些算法大多只考虑卸载优先的策略, 这种策略使用户设备(UE)被大量闲置. 我们提高了移动边缘计算(MEC)服务器和用户设备(UE)的资源利用率, 降低计算卸载的错误率, 提出了一种本地优先和改进TD3(twin delayed deep deterministic policy gradient)算法相结合的决策卸载模型, 并设计了仿真实验, 通过实验证明该模型确实可以提高MEC服务器和UE的资源利用率并降低错误率.  相似文献   

15.
在移动边缘计算中通过将终端设备的计算任务卸载到边缘服务器,可以利用边缘服务器资源解决终端设备计算能力不足的问题,同时满足移动应用程序对低延迟的需求.因此,计算卸载备受关注并成为移动边缘计算的关键技术之一.本文对移动边缘计算的计算卸载研究进展进行深度调研.首先,总结归纳出两类计算卸载方法——基于启发式算法的传统方法和基于在线学习的智能方法;从最小化延迟时间、最小化能耗、权衡时间和能耗三个不同优化目标对基于启发式算法的传统计算卸载进行分析对比;梳理了基于在线学习智能计算卸载采用的底层人工智能技术;然后介绍了边缘服务器资源分配方案和新兴的移动边缘计算应用场景;最后分析计算卸载方案存在的问题并展望移动边缘计算的计算卸载研究的未来方向,为后续研究工作指明方向.  相似文献   

16.
17.
为降低车联网(C-V2 X)中计算任务的时延与能耗,提出一种自适应的联合计算卸载资源分配算法.考虑多因素,多平台(本地计算、云计算、移动边缘计算(MEC)、空闲车辆计算)卸载,将计算卸载决策和资源分配建模为多约束优化问题.在粒子群算法基础上,提出粒子矩阵编码方式,联合优化车辆卸载决策、各平台任务卸载比例、MEC资源分配.提出粒子修正算法,结合罚函数法,解决多约束优化问题.仿真结果表明,与其它算法相比,该算法能在满足最大容忍时延的同时,最小化系统总成本.  相似文献   

18.
移动边缘计算(Mobile Edge Computing,MEC)把计算和存储等资源部署在网络边缘以满足某些对延迟要求苛刻的应用.用户设备可以通过无线网络将计算任务整体或者部分卸载到边缘服务器执行从而降低延迟和本地耗能,进而获得良好的用户体验.现有传统优化算法在MEC卸载决策和资源分配方面是可行的,但传统优化算法并不很...  相似文献   

19.
方海  赵扬  高媛  杨旭 《计算机工程与科学》2022,44(11):1951-1958
针对高低轨卫星网络协同边缘计算的卸载决策问题,提出了一种考虑任务依赖的联合计算资源、无线资源分配与任务调度的卫星网络边缘计算卸载决策算法。首先,将任务卸载问题建模为最小化任务延迟和能量消耗的联合优化问题;然后,将能源消耗和时延引入子任务优先级定义中,基于动态优先级进行启发式卸载策略搜索。该算法保证了子任务之间的依赖性并同时考虑了无线资源分配。仿真结果表明,与已有研究相比,该算法能缩短高低轨卫星协同计算的任务执行延迟,且能够降低低轨卫星功耗。  相似文献   

20.
车辆边缘计算环境下任务卸载研究综述   总被引:3,自引:0,他引:3  
计算密集和延迟敏感型车辆应用的出现对车辆设备有限的计算能力提出了严峻的挑战,将任务卸载到传统的云平台会有较大的传输延迟,而移动边缘计算专注于将计算资源转移到网络的边缘,为移动设备提供高性能、低延迟的服务,因此可作为处理计算密集和延迟敏感的任务的一种有效方法.同时,鉴于城市地区拥有大量智能网联车辆,将闲置的车辆计算资源充分利用起来可以提供巨大的资源和价值,因此在车联网场景下,结合移动边缘计算产生了新的计算模式——车辆边缘计算.近年来,智能网联车辆数量的增长和新兴车辆应用的出现促进了对车辆边缘计算环境下任务卸载的研究,本文对现有车辆边缘计算环境下任务卸载研究进展进行综述,首先,从计算模型、任务模型和通信模型三个方面对系统模型进行梳理、比较和分析.然后介绍了最小化卸载延迟、最小化能量消耗和应用结果质量三种常见的优化目标,并按照集中式和分布式两种不同的决策方式对现有的研究进行了详细的归类和比较.此外,本文还介绍了几种常用的实验工具,包括SUMO、Veins和VeinsLTE.最后,本文围绕卸载决策算法复杂度、安全与隐私保护和车辆移动性等方面对车辆边缘计算任务卸载目前面临的挑战进行了总结,并展望了车辆边缘计算环境下任务卸载未来的发展方向与前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号