首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Existing corrosion protection technologies for aluminium alloys utilising chromates are environmentally damaging and extremely toxic. This paper presents a preliminary investigation into rare earth diphenyl phosphates as new environmentally benign corrosion inhibitors. Full immersion weight loss experiments, cyclic potentiodynamic polarisation measurements and Raman spectroscopy were used in this study. Results show cerium diphenyl phosphate (Ce(dpp)3) acts as a cathodic inhibitor, decreasing cathodic current density and Ecorr by passivating cathodic intermetallic particles on the alloy surface. Mischmetal diphenyl phosphate (Mm(dpp)3) acts a mixed inhibitor, shifting Ecorr to more noble values, decreasing cathodic current density, increasing the breakdown potential and suppressing pitting.  相似文献   

2.
Hydrogen promoted initiation and propagation of pitting and crevice corrosion of X70 micro-alloyed steel were characterized by potential dynamic measurements, the scanning reference electrode technique (SRET) and electrochemical impedance spectra (EIS). At open circuit potential, in situ SRET results show that hydrogen accelerates the nucleation and propagation of pitting of X70 steel. The pitting potential Ep of X70 steel gradually decreases with an increase of chloride ion concentration in NaHCO3 solution. Pre-charged hydrogen does not have a significant effect on the pitting potential Ep and open circuit potential Ecorr of the steel in 0.5 M NaHCO3 solution. However, a synergistic effect of hydrogen and Cl on the anodic dissolution and pitting potential of X70 steel is observed in 0.5 M NaHCO3 solution containing chloride ions. When crevices are present in X70 steel, hydrogen accelerates the initiation and progress of crevice corrosion. The mechanisms by which hydrogen promotes the initiation and propagation of pitting and crevice corrosion are proposed and discussed.  相似文献   

3.
M. Reffass 《Electrochimica acta》2007,52(27):7599-7606
Pitting corrosion of carbon steel electrodes in 0.1 mol L−1 NaHCO3 + 0.02 mol L−1 NaCl solutions was induced by anodic polarisation. The evolution of the breakdown potential Eb with NO2 concentration was investigated by linear voltammetry. Eb increased from −15 ± 5 mV/SCE for [NO2] = 0 up to 400 ± 50 mV/SCE for [NO2] = 0.1 mol L−1. During anodic polarisation at potentials comprised between Eb([NO2] = 0) and Eb([NO2] ≠ 0), the behaviour of the whole electrode surface, followed by chronoamperometry, was compared to the behaviour of one single pit, followed via scanning vibrating electrode technique (SVET). Addition of a NaNO2 solution after the beginning of the polarisation led to a rapid repassivation of pre-existing well-grown pits. In situ micro-Raman spectroscopy was then used to identify the corrosion products forming inside the pits. The first species to be detected in the presence of NO2 were mainly dissolved Fe(III) species, more likely [FeIII(H2O)6]3+ complexes. Iron(II) carbonate FeCO3, siderite, and carbonated green rust GR(CO32−) were also detected in the active pits, as in the absence of nitrite. But they were accompanied by maghemite γ-Fe2O3, a phase structurally similar to the passive film, that forms from the Fe(III) complexes. The Raman analyses then correlate with the SVET observations and confirm that the main effect of nitrite ions is to oxidize iron(II) into iron(III). The passive film would then form from the Fe(III) species still bound to the steel surface.  相似文献   

4.
The corrosion resistance behavior of Ni-Co-B coated carbon steel, Al 6061 alloy and 304 stainless steel was evaluated in simulated proton exchange membrane fuel cell (PEMFC) environment. The phase structure of the NiCoB based alloy was determined by Rietveld analysis. The PEMFC environment was constituted of 0.5 M H2SO4 at 60 °C and the evaluation techniques employed included potentiodynamic polarization, linear polarization resistance, open circuit potential measurements and electrochemical impedance spectroscopy. The results showed that in all cases the corrosion resistance of the Ni-Co-B coating was higher than that of the uncoated alloys; about two orders of magnitude with respect to carbon steel and an order of magnitude compared to 304 stainless steel. Except for the uncoated 304 type stainless steel, the polarization curves for the coated specimens did not exhibit a passive region but only anodic dissolution. The corrosion potential value, Ecorr, was always nobler for the coated samples than for the uncoated specimens. This was true for the stainless steel in the passive region, but in the active state for the carbon steel and Al 6061 alloy. The corrosion of the underlying alloy occurred due to filtering of the solution through coating defects like microcracks, pinholes, etc. During the filtering process the Ecorr value of the coating decreased slowly until it reached a steady state value, close to the Ecorr value of the underlying alloy.  相似文献   

5.
The pitting corrosion of carbon steel in carbonate-formation water solution in the presence of chloride ions and the effect of addition WO42−, MoO42− and NO2 anions on the pitting corrosion were studied using cyclic voltammetry and potentiostatic current-time measurements and complemented by scan electron microscope (SEM), energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) investigations. Cyclic voltammograms of carbon steel in the presence of chloride ions in carbonate-formation water solution show one anodic peak, corresponding to the formation green rust carbonate and the two cathodic peaks. As the addition of Cl ions concentration increases, the anodic peak current density increases and pitting potential Epit shifts to more negative potential. It is shown that the rate of pit initiation () decreases and the pitting potential Epit moves to more positive direction upon the addition of inorganic anions. It was found that pitting inhibition of carbon steel increases in the sequence: (WO4)2− > (MoO4)2− > (NO2).  相似文献   

6.
Electrochemical and XPS investigations of cobalt in KOH solutions   总被引:1,自引:0,他引:1  
The electrochemical behaviour of cobalt in KOH solutions of different concentrations was studied. The effects of applied potential, temperature and the presence of aggressive Cl ions were investigated. Different electrochemical methods such as open-circuit potential measurements, polarisation techniques and electrochemical impedance spectroscopy (EIS) were used. The electrochemical behaviour of cobalt in naturally aerated KOH solutions is characterized by three different regions according to the alkali concentration. Corrosion behaviour was observed at high concentrations (0.3–1.0 M); passivation at lower concentrations (0.01–0.05 M), and at intermediate concentrations (0.1–0.2 M) corrosion followed by passivation was recorded. The corrosion parameters (i corr, E corr, and R corr) under various conditions were calculated. Equivalent-circuit models for the electrode–electrolyte interface under different conditions were proposed. The experimental impedance data were fitted to theoretical data according to the proposed models. The relevance of the proposed models to the corrosion–passivation phenomena occurring at the electrode–solution interface was discussed. The electrochemical experimental results and discussions were supported by surface analytical techniques.  相似文献   

7.
Corrosion resistance in activated fly ash mortars   总被引:2,自引:0,他引:2  
The question of whether reinforcing steel can be protected with activated fly ash cement as effectively as with Portland cement is explored in this study. Corrosion potential (Ecorr) and polarisation resistance (Rp) values for steel electrodes embedded in Portland cement mortar and two fly ash mortars, respectively activated with NaOH and waterglass+NaOH solutions, are monitored. Chloride-free activated fly ash mortars are found to passivate steel reinforcement as speedily and effectively as Portland cement mortars, giving no cause to fear that corrosion may limit the durability of reinforced concrete structures built with these new types of activated fly ash cement. The polarisation curves and the response to short-term anodic current pulses (galvanostatic pulse technique) obtained further corroborate the full and stable passivation of the steel by the concrete manufactured with these binders.  相似文献   

8.
Magnesium coating was electroplated on carbon steel to improve its corrosion protection. The analytical characterization of the magnesium coating was performed by scanning electron spectroscopy and energy dispersive X-ray spectroscopy. The electrochemical behavior of Mg-coated carbon steel was assessed by electrochemical impedance spectroscopy, open-circuit potential measurements and potentiodynamic polarization curves in 0.03% sodium chloride solution. The electrochemical results showed that the self-corrosion current density (i corr) of magnesium-coated steel was 0.32 mA cm?2 (about 1.8% of that of uncoated steel). Impedance results showed an increase of the total impedance when magnesium coating was applied on steel substrate. The corrosion protection was ensured by a two-step mechanism. The first step was cathodic polarization; the second step was the formation of a barrier due to magnesium oxides composed of MgO, Mg(OH2) and Mg(OH3)Cl.  相似文献   

9.
The effect of type and position of the substituted group of pyrazole derivatives for corrosion inhibition of Delta steel in acid chloride solutions has been investigated. It was found that increase of inhibitor concentration decreased both the corrosion rate,R corr, and the corrosion current,i corr, and shifted the corrosion potential,E corr, to more positive values, i.e. the predominant action was as an anodic inhibitor. The results showed that the adsorption isotherm is S-shaped. The inhibition efficiency of the different substituted pyrazole derivatives follows the order: methyl相似文献   

10.
The corrosion and passivation behaviors of two types of stainless steel alloys (ferritic and austenitic steels) in ternary molten Li2CO3-Na2CO3-K2CO3 mixture at different temperatures (475-550 °C) were studied using galvanostatic polarization and cyclic voltammetry. The galvanostatic polarization curves of the investigated alloys illustrate the passivation and passivity breakdown of the alloys. The passivation potential range for the three investigated steel alloys is about 1.15-1.3 V. During this potential range different oxide and spinels are formed, the nature of which depends on the type of alloy and the anodization potential. At high anodic potentials the decomposition of carbonate takes place, leading to passivity breakdown and oxygen evolution. The values of corrosion parameters (Rp, io and icorr) were calculated. The calculated values indicate that the corrosion resistance of the austenitic stainless steel is higher than that of the ferritic steel. The activation energy of the corrosion process was found to be equal to about 70 kJ mol−1. The results of the cyclic voltammetric investigations indicate that the behavior of the austenitic steels is about the same and differs from that of ferritic steel. The corrosion tests in 0.2 M HCl solutions have shown that the oxide scales formed on the surface of the austenitic stainless steels are multilayered, whereas those formed on the ferritic alloy are uniform.  相似文献   

11.
M. Reffass 《Electrochimica acta》2009,54(18):4389-4396
Pitting corrosion of carbon steel electrodes in 0.1 M NaHCO3 + 0.02 M NaCl solutions was induced by anodic polarisation. The evolution of the breakdown potential Eb with the phosphate concentration was investigated by linear voltammetry. Eb increased from −15 ± 5 mV/SCE for [HPO42−] = 0 to 180 ± 40 mV/SCE for [HPO42−] = 0.02 mol L−1. During anodic polarisation (E = 50 mV/SCE), the behaviour of the whole electrode surface, followed by chronoamperometry, was compared to the behaviour of one single pit, followed via the scanning vibrating electrode technique (SVET). The addition of a Na2HPO4 solution after the beginning of the polarisation did not lead to the repassivation of pre-existing well-grown pits. The corrosion products forming in the pits were identified in situ by micro-Raman spectroscopy. They depended on the phosphate concentration. For [HPO42−] = 0.004 mol L−1, siderite FeCO3 was detected first. It was oxidised later into carbonated green rust GR(CO32−) by dissolved O2. The beginning of the process is therefore similar to that observed in the absence of phosphate. Finally, GR(CO32−) was oxidised into ferrihydrite, the most poorly ordered form of Fe(III) oxides and oxyhydroxides. Phosphate species, adsorbing on the nuclei of FeOOH, inhibited their growth and crystallisation. For [HPO42−] = 0.02 mol L−1, siderite was accompanied by an amorphous precursor of vivianite, Fe2(PO4)3·8H2O. This shows that, in any case, phosphate species interact strongly with the iron species produced by the dissolution of steel.  相似文献   

12.
W Morris 《Electrochimica acta》2004,49(25):4447-4453
The chloride threshold (ClTH) concentration for rebar corrosion initiation has received extensive attention over the last years. The chloride threshold concentration depends on several factors involving concrete composition and quality, exposure conditions and rebar surface characteristics. As a consequence, many researchers have proposed ClTH ranges that take into account the relative influence of each of these many factors. On the other hand, the electrical resistivity of concrete has proven to be an effective parameter that can be used to estimate the risk of reinforcing steel corrosion, particularly when corrosion is induced by chloride attack. The present study is based on a correlation of electrochemical parameters such as corrosion potential (Ecorr) and current density (icorr) together with concrete resistivity (ρ) and chloride concentration data. A relationship between chloride threshold values for rebar corrosion initiation and resistivity values (indicative of concrete quality) is proposed. According to this correlation, when the electrical resistivity of concrete increases from 2 to 100 kΩ cm, the value of ClTH increases from 0.44 to 2.32% relative to the weight of cement.  相似文献   

13.
The pitting corrosion behaviour of Al in aerated neutral sodium perchlorate solutions was investigated by potentiodynamic, cyclic voltammetry, galvanostatic, potentiostatic and electrochemical impedance spectroscopy (EIS) techniques, complemented by ex situ scanning electron microscopy (SEM) examinations of the electrode surface. The potentiodynamic anodic polarization curves do not exhibit active dissolution region due to spontaneous passivation. The passivity is due to the presence of thin film of Al2O3 on the anode surface. The passive region is followed by pitting corrosion as a result of breakdown of the passive film by ClO4 ions. SEM images confirmed the existence of pits on the electrode surface. Cyclic voltammetry and galvanostatic measurements allow the pitting potential (Epit) and the repassivation potential (Erp) to be determined. Epit decreases with increase in ClO4 concentration, but increases with increase in potential scan rate. Potentiostatic measurements showed that the overall anodic processes can be described by three stages. The first stage corresponds to the nucleation and growth of a passive oxide layer. The second and the third stages involve pit nucleation and growth, respectively. Nucleation of pit takes place after an incubation time (ti). The rate of pit nucleation (ti−1) increases with increase in ClO4 concentration and applied step anodic potential (Es,a). EIS measurements showed that at Es,a < Epit, a charge-transfer semicircle is obtained. This semicircle is followed by a Warburg diffusion tail at Es,a > Epit. An attempt is made to compare the values of Epit and Erp obtained through different methods and to determine the factors influencing these values in each particular method.  相似文献   

14.
《Ceramics International》2019,45(11):13747-13760
TiO2-rGO nanocomposite coatings were obtained by electrophoretic deposition (EPD) technique of TiO2 nanoparticles and graphene oxide (GO) on stainless steel substrate. First, GO particles were synthesized using a modified Hummers' method. GO was reduced electrochemically to form a coating in the presence of nano-sized TiO2 particles. The influences of different parameters such as GO concentration, coupling co-electro-deposition parameters (electrophoretic duration and voltage) on thickness, surface morphology and, corrosion behavior of the as-synthesized TiO2-rGO nanocomposite coatings were systematically surveyed. The morphology and microstructure were investigated by field emission scanning electron microscopy (FE-SEM), Raman spectra and X-ray diffraction (XRD) techniques. Atomic force microscopy (AFM) was harnessed to evaluate the topography of the as-prepared GO powder. The bonding characteristics of as-synthesized and as-reduced GO were examined after deposition, by Energy Dispersive Analysis of X-Ray (EDX) and Fourier-transform infrared spectroscopy (FT-IR). Corrosion behavior of coatings and that of the pure TiO2 layer were evaluated by electrochemical impedance spectroscopy (EIS) and polarization techniques (by applying potentiodynamic polarization spectroscopy (PDS)). Detailed SEM studies showed that increasing EPD voltage brings about a coating with increased porosity and microcracks with higher thickness. In addition to that, the presence of rGO reduced corrosion current density (icorr) and shifted corrosion potential (Ecorr) toward more noble values in 3.5% NaCl at room temperature. Also, Analyses revealed that the optimum electrophoretically synthesized coating was obtained at GO concentration of 1 g/L, 30 V and 30 min at room temperature. The corrosion current density of the corresponding coating was remediated up to 0.2 μA cm−2, which means an anti-corrosion ability of about 30 times compared to TiO2-coated and bare 316L stainless steel. The results of impedance spectroscopic studies demonstrated that this coating renders as a barrier layer and resistance increased from 2.95 KΩ cm2 for TiO2-coated layer to 10.49 KΩ cm2 for the optimized layer.  相似文献   

15.
Research on non‐toxic inhibitors is of considerable interest in investigations into the replacement of hazardous classical molecules. This paper reports the action of four amino acids containing sulfur on the corrosion of mild steel in phosphoric acid solution with and without Cl?, F? and Fe3+ ions near and at the corrosion potential (Ecorr) using both the polarization resistance method and electrochemical impedance spectroscopy (EIS). Both cysteine and N‐acetylcysteine (ACC) showed higher inhibition efficiency than methionine and cystine. Adsorption of methionine onto a mild steel surface obeys the Frumkin adsorption isotherm and has a free energy of adsorption value (ΔG °ads) lower than those obtained in the presence of cystine, cysteine and ACC whose adsorption isotherms follow that of Langmuir. Both F? and Fe3+ ions stimulate mild steel corrosion while Cl? ions inhibit it. The binary mixtures of methionine, cysteine or ACC with Cl? or F? ions are effective inhibitors (synergism) while the combinations of the amino acid with Fe3+ or the ternary Cl?/F?/Fe3+ mixture have low inhibitive action (antagonism). EIS measurements revealed that the charge transfer process mainly controls the mechanism of mild steel corrosion in phosphoric acid solution in the absence and presence of the investigated additives. The mechanism of corrosion inhibition or acceleration is discussed. © 2002 Society of Chemical Industry  相似文献   

16.
Porous silicon microstructures were fabricated by applying potential steps through which both anodic and cathodic potentials were periodically applied to silicon wafers. The electrochemical behaviors of porous silicon layers were examined by performing polarization measurements, followed by analyzing the open-circuit potential (Eocp) and the reaction rate in terms of corrosion current density (jcorr). The surface morphologies and surface products of porous silicon were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). It was found that the values of Eocp and jcorr varied more significantly and irregularly during different polarization stages when the potentials were continuously applied to the wafer surface, while virtually unchanged after 2 min of periodic potential application. In addition, slower reaction rates were observed with applying potential steps, as indicated by smaller values of jcorr. The enhancement on refreshment of silicon surfaces by periodic potential polarization significantly accelerated the growth of porous silicon. The microstructures became more uniformed and better defined due to the improved passivating nature of wafer surfaces.  相似文献   

17.
As a first step towards studying pitting corrosion of Zn in deaerated neutral sodium nitrite solutions (pH 6.9), we have reported the results of potentiodynamic polarization and cyclic voltammetry measurements on the passivity and passivity breakdown of Zn in these solutions. Measurements were conducted under the influence of various experimental conditions, complemented by ex situ scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) examinations of the electrode surface. The voltammograms involve active/passive transition prior to the initiation of pitting corrosion as a result of breakdown of the passive film by NO2 ions. The active region displays one anodic peak due to the formation of ZnO passive film on the anode surface. SEM examinations confirmed the existence of pits on the electrode surface. The potential at which pits initiated (Epit) was determined, together with a pit transition potential (Eptp) that appeared as an abrupt current discontinuity on the reverse potential scan (hysteresis loop), and a protection potential (Eprot) that appeared at the end of the hysteresis loop. The value of Epit shifted negatively as either Cnitrite or temperature was increased, while it increased with the increase in potential scan rate. The effect of adding some environmentally acceptable inorganic inhibitors, as tungstates, molybdates and silicates (water glass), on the pitting corrosion behaviour of Zn in nitrite solutions has also been studied. The mechanism of inhibition was discussed.  相似文献   

18.
G Salvago 《Electrochimica acta》2002,47(11):1787-1793
Localized and general corrosion of stainless steels is considered. In the case of localized corrosion, statistical parameters are deduced from the comparison of the distributions of breakdown and corrosion potential values to rank different materials, environments and designs. Cumulative frequency F is considered for breakdown (Eb) and corrosion (Ec) potential, and both are represented on a logarithm plot as E=E(log F). An extrapolated value of F (the risk H) corresponding to Eb=Ec is related to the field behavior of the material. The risk H is formally related to the corrosion current density (i) of the general corrosion approach. An analogy between the formalism of the probabilistic treatment of localized corrosion of stainless steels and that of uniform corrosion is highlighted through Monte Carlo simulation. Introducing a discretization model of the general corrosion, the time evolution of the surface roughness during general corrosion of stainless steels is reproduced in agreement with the experimental results. According to this model, the general corrosion can be treated on a similar basis of the localized corrosion in terms of discretization of corroding areas, and vice-versa localized corrosion can be treated on a similar basis of the general corrosion in terms of statistical distributions of the potential values.  相似文献   

19.
Titanium and its alloys are widely used as materials for implants, owing to their corrosion resistance, mechanical properties and excellent biocompatibility. However, clinical experience has shown that they are susceptible to localised corrosion in the human body causing the release of metal ions into the tissues surrounding the implants. Several incidences of clinical failures of such devices have demanded the application of biocompatible and corrosion resistant coatings and surface modification of the alloys. Coating metallic implants with bioactive materials is necessary to establish good interfacial bonds between the metal substrate and the bone. Hence, this work aimed at developing a bioglass-apatite (BG-HAP) graded coating on Ti6Al4V titanium alloy through electrophoretic deposition (EPD) technique. The coatings were characterized for their properties such as structural, electrochemical and mechanical stability. The electrochemical corrosion parameters such as corrosion potential (Ecorr) (open circuit potential) and corrosion current density (Icorr) evaluated in simulated body fluid (SBF) have shown significant shifts towards noble direction for the graded bioglass-apatite coated specimens in comparison with uncoated Ti6Al4V alloy. Electrochemical impedance spectroscopic investigations revealed higher polarisation resistance and lower capacitance values for the coated specimens, evidencing the stable nature of the formed coatings. The results obtained in the present work demonstrate the suitability of the electrophoretic technique for the preparation of graded coating on Ti6Al4V substrates.  相似文献   

20.
The electrochemical behaviour of Cu, Cu–37Zn and Zn in benzotriazole (BTA) containing chloride solutions was studied and compared using potentiodynamic, cyclic voltammetry and electrochemical impedance spectroscopy. The presence of BTA in the chloride-containing solutions gave rise to higher breakdown potentials, significantly higher polarisation resistances and inhibited the formation of CuCl2 and zinc-containing corrosion products. These effects were observed for pure Cu, Cu–Zn and to a somewhat lesser extent pure Zn. The electrochemical impedance data were consistent with the formation of a polymeric BTA-containing layer for all three systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号