首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
We attempted to elucidate molecular mechanisms of gonadotropin-releasing hormone (GnRH) gene regulation by the protein kinase C (PKC) pathway in GT1-1 cells. Activation of PKC with 12-tetra-decanoylphorbol-13-acetate (TPA) or inhibition with staurosporine or calphostin C down-regulated GnRH mRNA levels. A serial deletion mutant analysis revealed that this suppression was mediated by the proximal region (-187/-69) of the mouse GnRH promoter. TPA transiently induced c-fos mRNA, whereas staurosporine or calphostin C failed to do so. However, PKC inhibitors blocked the TPA-evoked c-fos induction. Over-expression of PKC alpha down-regulated GnRH promoter activity, indicating that PKC activation was sufficient to inhibit GnRH gene expression. These results suggest that both activation and inhibition of PKC decrease the GnRH gene expression in the GT1-1 cells probably through different signal cascade mechanisms.  相似文献   

9.
10.
The effect of gonadotropin-releasing hormone (GnRH) upon protein kinase C (PKC) delta and PKCepsilon gene expression was investigated in the gonadotroph-derived alphaT3-1 cell line. Stimulation of the cells with a stable analog [D-Trp6]GnRH (GnRH-A) resulted in a rapid elevation of PKCepsilon mRNA levels (1 h), while PKCdelta mRNA levels were elevated only after 24 h of incubation. The rapid elevation of PKCepsilon mRNA by GnRH-A was blocked by pretreatment with a GnRH antagonist or actinomycin D. The PKC activator 12-O-tetradecanoylphorbol-13-acetate (TPA), but not the Ca2+ ionophore ionomycin, mimicked the rapid effect of GnRH-A upon PKCepsilon mRNA elevation. Additionally, the rapid stimulatory effect of GnRH-A was blocked by the selective PKC inhibitor GF109203X, by TPA-mediated down-regulation of endogenous PKC, or by Ca2+ removal. Interestingly, serum-starvation (24 h) advanced the stimulation of PKCdelta mRNA levels by GnRH-A and the effect could be detected at 1 h of incubation. The rapid effect of GnRH-A upon PKCdelta mRNA levels in serum-starved cells was mimicked by TPA, but not by ionomycin, and was abolished by down-regulation of PKC or by Ca2+ removal. Preactivation of alphaT3-1 cells with GnRH-A for 1 h followed by removal of ligand and serum resulted in elevation of PKCdelta mRNA levels after 24 h of incubation. Western blot analysis revealed that GnRH-A and TPA stimulated (within 5 min) the activation and some degradation of PKCdelta and PKCepsilon. We conclude that Ca2+ and PKC are involved in GnRH-A elevation of PKCdelta and PKCepsilon mRNA levels, with Ca2+ being necessary but not sufficient, while PKC is both necessary and sufficient to mediate the GnRH-A response. A serum factor masks PKCdelta but not PKCepsilon mRNA elevation by GnRH-A, and its removal exposes preactivation of PKCdelta mRNA by GnRH-A which can be memorized for 24 h. PKCdelta and PKCepsilon gene expression evoked by GnRH-A is autoregulated by PKC, and both isotypes might participate in the neurohormone action.  相似文献   

11.
12.
Exposure of the gonadotrope cells to gonadotropin-releasing hormone (GnRH) reduces their responsiveness to a new GnRH stimulation (homologous desensitization). The time frame as well as the mechanisms underlying this phenomenon are yet unclear. We studied in a gonadotrope cell line (alphaT3-1) the effects of short as well as long term GnRH pretreatments on the GnRH-induced phospholipases-C (PLC), -A2 (PLA2) and -D (PLD) activities, by measuring the production of IP3, total inositol phosphates (IPs), arachidonic acid (AA) and phosphatidylethanol (PEt) respectively. We demonstrated that although rapid desensitization of GnRH-induced IP3 formation did not occur in these cells, persistent stimulation of cells with GnRH or its analogue resulted in a time-dependent attenuation of GnRH-elicited IPs formation. GnRH-induced IPs desensitization was potentiated after direct activation of PKC by the phorbol ester TPA, suggesting the involvement of distinct mechanisms in the uncoupling exerted by either GnRH or TPA on GnRH-stimulated PI hydrolysis. The levels of individual phosphoinositides remained unchanged under any desensitization condition applied. Interestingly, while the GnRH-induced PLA2 activity was rapidly desensitized (2.5 min) after GnRH pretreatments, the neuropeptide-evoked PLD activation was affected at later times, indicating an important time-dependent contribution of these enzymatic activities in the sequential events underlying the GnRH-induced homologous desensitization processes in the gonadotropes. Under GnRH desensitization conditions, TPA was still able to induce PLD activation and to further potentiate the GnRH-evoked PLD activity. AlphaT3-1 cells possess several PKC isoforms which, except PKCzeta, were differentially down-regulated by TPA (PKCalpha, betaII, delta, epsilon, eta) or GnRH (PKCbetaII, delta, epsilon, eta). In spite of the presence of PKC inhibitors or down-regulation of PKC isoforms by TPA, the desensitizing effect of the neuropeptide on GnRH-induced IPs, AA and PEt formation remained unchanged. In conclusion, in alphaT3-1 cells the GnRH-induced homologous desensitization affects the GnRH coupling with PLC, PLA2 and PLD by mechanism(s) which do not implicate TPA-sensitive PKC isoforms, but likely reflect time-dependent modification(s) on the activation processes of the enzymes.  相似文献   

13.
14.
15.
16.
We have shown previously that protein kinase A (PKA) subunit levels are regulated by activation of PKA or protein kinase C (PKC) in anterior pituitary cells. GnRH also influenced PKA subunit levels, suggesting that hormonal regulation occurs in gonadotrophs, and therefore, we have reexamined this question using the clonal gonadotrope-derived cell line (alphaT3-1 cells). Western blot analysis, using specific immunoaffinity purified immunoglobulins, revealed expression of catalytic (Cat) and regulatory type I (RI) and type II (RII) subunits of PKA in these cells. Activation of adenylyl cyclase (AC) with forskolin, or of PKC with tetradecanoyl phorbol acetate (TPA), caused a rapid (detectable at 0.5-1 h) and concentration-dependent loss of all PKA subunits. Forskolin (10-100 microM) reduced Cat and RI by 60% and RII by 30%, whereas TPA (0.1-1 microM) reduced Cat and RII by 50% and RI by 40%. Simultaneous activation of PKA and PKC caused the expected dose-dependent reductions in Cat, and the effects of forskolin or TPA were nearly additive. RI and RII were reduced similarly by 10 nM TPA, whereas 100 nM TPA tended to prevent the reduction of RI or RII caused by forskolin. GnRH, which activates phosphoinositidase C and not AC in these cells, caused a clear loss of Cat or RII at all concentrations tested and of RI at 0.1 nM. Pituitary adenylate cyclase-activating polypeptide 38, which acts via PVR-1 receptors to stimulate both phosphoinositidase C and AC in these cells, also caused a clear dose-dependent decrease in Cat, RI, and RII, although higher concentrations were needed for the latter effects. Together, the data demonstrate that catalytic and regulatory subunits of PKA are subject to both hormonal and receptor-independent regulation in alphaT3-1 cells, reinforcing the possibility that such effects occur in nonimmortalized gonadotropes. Whereas the effects of PKA activators very likely involve proteolytic degradation of the dissociated PKA holoenzyme, the effects of TPA and GnRH occur in the absence of cAMP elevation by unknown mechanisms. Whatever the mechanisms involved, the data reveal a mechanism for cross-talk between phosphoinositidase C and AC-mediated hormonal signals, in which PKC activation seems to play a pivotal role.  相似文献   

17.
18.
The present study examined the effect of alterations in GnRH signal pattern (pulsatile vs. continuous; pulse frequency) on mitogen-activated protein kinase (MAPK) activity and whether MAPK plays a role in regulating gonadotrope gene expression. Pituitary MAPK activity was measured by immunoblot, using a phospho-specific MAPK antibody, corrected to the amount of total MAPK per sample. In vivo studies were conducted in adult castrate testosterone-replaced male rats (to suppress endogenous GnRH). Animals received pulsatile or continuous GnRH (or BSA-saline for controls) via jugular cannulas. Initial studies revealed that pulsatile GnRH stimulated a dose-dependent rise in MAPK activity (30 ng, 2-fold increase; 100 ng, 4-fold; 300 ng, 8-fold) 4 min after the pulse. The effect of pulsatile vs. continuous GnRH was examined by administering 50-ng pulses (60-min interval) or a continuous infusion (25 ng/min) for 1, 2, 4, or 8 h. Pulsatile GnRH stimulated a 2- to 4-fold rise in MAPK activity (P < 0.05 vs. controls) that was maintained over the 8-h duration. In contrast, continuous GnRH only increased MAPK activity (2- to 3-fold; P < 0.05 vs. controls) for 2 h, with MAPK activity returning to baseline at later time points. The effect of GnRH pulse frequency on MAPK activation was determined by giving GnRH pulses (50 ng) at 30-, 60-, or 120-min intervals for 8 h. Maximal increases (3-fold vs. controls; P < 0.05) were seen after 120-min pulses, with faster (30- to 60-min interval) pulses stimulating 2-fold increases in MAPK activity (P < 0.05 vs. controls and 120-min GnRH pulse group). The role of MAPK activation on gonadotrope (alpha, LHbeta, FSHbeta, and GnRH receptor) gene expression was determined in vitro. Preliminary studies demonstrated that the MAPK inhibitor, PD-098059 (50 microM), completely blocked GnRH-induced increases in MAPK activity in adult male pituitary cells. Further studies revealed that PD-098059 blocked gonadotrope messenger RNA (mRNA) responses to pulsatile GnRH (100 pg/ml, 60-min interval, 24-h duration) in a selective manner, with alpha, FSHbeta, and GnRH receptor (but not LHbeta) mRNA responses being suppressed. These results show that a pulsatile GnRH signal is required to maintain MAPK activation for durations of longer than 2 h, and that slower frequency pulses are more effective. Further, MAPK plays a crucial role in alpha, FSHbeta, and GnRH receptor mRNA responses to pulsatile GnRH. Thus, divergent MAPK responses to alterations in GnRH signal pattern may be one mechanism involved in differential regulation of gonadotrope gene expression.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号