首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
提出了一种基于提升算法的二维离散5/3小波变换(DWT)高效并行VLSI结构设计方法。该方法使得行和列滤波器同时进行滤波,采用流水线设计方法处理,在保证同样的精度下,大大减少了运算量,提高了变换速度,节约了硬件资源。该方法已通过了VerilogHDL行为级仿真验证,可作为单独的IP核应用在JPEG2000图像编、解码芯片中。该结构可推广到9/7小波提升结构。  相似文献   

2.
提出一种基于提升算法(lifting scheme)实现JPEG2000编码系统中的二维离散小波变换(Discrete Wavelet Transform)的并行阵列式的VLSI结构设计方法.该结构由一个行处理器和一个列处理器组成,行、列处理器通过时分复用同时进行滤波,用优化的移位加操作替代乘法操作,采用嵌入式数据延拓算法处理边界延拓.整个结构采用流水线设计方法,减少了运算量,提高了硬件资源利用率,该结构可应用于JPEG2000图像编码芯片中.  相似文献   

3.
在本文中,我们提出了一种离散小波变换(DWT)及其逆变换(IDWT)的VLSI结构,这一结构利用DWT/IDWT的结构和数值特性大大降低了系统的实现规模,同时由于采用了并行流水线和平衡数据通道等技术,可以获得每个时钟两个数据的处理速度和五个时钟节拍的流水线时延.基于硬件描述语言VHDL的模拟和综合结果表明,采用1.5μmCMOS工艺时,电路的规模为5058单元面积,在最坏情况下,最高时钟频率约可达55MHz,数据处理速度达到110Mpoints/s.  相似文献   

4.
二维9/7小波变换VLSI设计   总被引:1,自引:0,他引:1  
为了提高JPEG2000图像压缩速度,提出一种基于提升算法的二维离散9/7小波变换(DWT)Mesh结构的VLSI设计方案,利用这种Mesh结构的VLSI能够实现并行处理一个图像的所有像素点.这种并行处理的Mesh结构可提高小波变换电路速度,以及图像压缩的速度.  相似文献   

5.
离散小波变换的VLSI实现   总被引:3,自引:0,他引:3  
乔世杰  王国裕 《微电子学》2001,31(2):143-145
离散小波变换已广泛应用于信号处理中。然而,实时小波变换需要大量运算,因此,专用小波变换芯片的设计已成为信号处理中的关键技术。文章提出了一种小波变换递归金字塔算法的VLSI结构,采用一组输入延迟单元和一个控制单元,用一组并行滤波器完成了小波变换。编写了相应的Verilog HDL模块,并进行了仿真和逻辑综合。  相似文献   

6.
一维离散小波/小波包变换的VLSI结构   总被引:1,自引:0,他引:1  
小波/小波包变换作为强有力的信号处理手段,正在越来越多的领域中得到了应用,因而其硬件实现也日益受到重视.本文针对小波/小波包变换在语音编码中的应用,给出了一维离散小波/小波包变换的VLSI结构.和现有的一些实现方案不同,该结构可用于不同支集长度小波、不同长度数据段、不同变换阶数,具有较大的通用性和可编程性,可作为多种处理系统的片上变换单元,亦可单片实现  相似文献   

7.
一种适合JPEG2000的离散小波变换VLSI统一结构   总被引:7,自引:0,他引:7  
华林  朱柯  周晓芳  章倩苓 《微电子学》2003,33(4):280-283,287
提出了一种基于提升算法(1ifting)的离散小波变换(DWT)统一结构。它无需额外的边界延拓过程,经配置后可适用于JPEG2000中的无损或有损小波变换。通过将边界延拓过程内嵌于离散小波变换中,可以降低功耗,减少所需内存。为了达到更高的处理速度和硬件利用率,采用了流水线和折叠结构。这种高效紧凑的离散小波变换结构适用于JPEG2000编码器和各种实时图像/视频应用系统.  相似文献   

8.
为了提高JPEG2000图像压缩速度,提出一种基于提升算法的二维离散9/7小波变换(DWT)Mesh结构的VLSI设计方案,利用这种Mesh结构的VLSI能够实现并行处理一个图像的所有像素点。这种并行处理的Mesh结构可提高小渡变换电路速度,以及图像压缩的速度。  相似文献   

9.
离散小波变换需要较大的运算量和运算空间,为了提高JPEG2000图像压缩速度,提出一种基于提升算法的二维离散5/3小波变换的VLSI架构,这种结构同时进行行变换和列变换。文章对于VLSI架构的五大模块(行小波变换运算模块、两个列小波变换模块、FIFO寄存组和系统整体控制模块)的硬件实现给出了相应的方案。在Quartus II 7.2的平台下对于设计的该系统的时序仿真测试结果表明,综合分析后系统最小组合逻辑时延为7.142ns,可达到的最高频率为140.02MHz。时序仿真测试中当系统工作频率为100MHz,数据吞吐率达到773.944Mbit/s。  相似文献   

10.
王超  曹鹏  李杰  黄伟达 《现代电子技术》2007,30(14):114-118
离散小波变换(Discrete Wavelet Transform,DWT)需要较多的运算量以及较大的存储器空间,为了使之适用于实时的图像处理应用,就需要开发特殊的架构和芯片来提高离散小波变换的运算性能。基于提升的二维DWT提出了一种新型的VLSI结构——LLSP架构,其结合逐级和基于行的架构这两者特点,带来了硬件开销和存储器空间的降低,并可以用于多提升步骤的扩展以及多级二维离散小波变换。  相似文献   

11.
JPEG2000的53小波提升方法的DSP的并行实现   总被引:1,自引:0,他引:1  
提出了两种不同的,基于DSP芯片TMS320VC5502的,具有并行运算特点的5/3小波提升方法的硬件实现方案;并且分析了两种方案的效率差异。实验证实,两种方案均明显缩短了对图像数据进行离散小波变换的时间。  相似文献   

12.
The suitability of the 2D Discrete Wavelet Transform (DWT) as a tool in image and video compression is nowadays indisputable. For the execution of the multilevel 2D DWT, several computation schedules based on different input traversal patterns have been proposed. Among these, the most commonly used in practical designs are: the row–column, the line-based and the block-based. In this work, these schedules are implemented on FPGA-based platforms for the forward 2D DWT by using a lifting-based filter-bank implementation. Our designs were realized in VHDL and optimized in terms of throughput and memory requirements, in accordance with the principles of both the schedules and the lifting decomposition. The implementations are fully parameterized with respect to the size of the input image and the number of decomposition levels. We provide detailed experimental results concerning the throughput, the area, the memory requirements and the energy dissipation, associated with every point of the parameter space. These results demonstrate that the choice of the suitable schedule is a decision that should be dependent on the given algorithmic specifications.
Yiannis AndreopoulosEmail:
  相似文献   

13.
JPEG2000小波变换器的VLSI结构设计   总被引:2,自引:1,他引:2  
新一代静止图像压缩标准JPEG2000将离散小波变换(DWT)作为其核心变换技术,并推荐采用推举体制(lifting)快速算法来实现.空间组合推举体制算法(SCLA)大大降低了lifting的运算量.当选用9/7小波滤波器时,SCLA的乘法运算量只有lifting的7/12.本文提出了一种实现SCLA算法的VLSI结构,降低了基于lifting实现的运算量, 加快了变换的速度,减小了电路的规模.本文的二维正反小波变换器已经作为单独的IP核应用于我们目前正在开发的JPEG2000图像编解码芯片中.  相似文献   

14.
小波变换在数字图像处理领域有着广泛的应用,其对图像的处理常采用行列分离处理方式,这种方式不能完全吻合人眼视觉特性.针对这一情况,构造了一种与人眼视觉特性更加吻合的纯二维小波变换处理方式.首先,由一维5/3小波滤波器组通过McClellan变换构造纯二维5/3小波滤波器组,并用提升格式实现;然后,用该提升格式与纯二维Lazy小波滤波器组相嵌套的形式实现图像的纯二维5/3小波变换.为了便于工程应用,给出了其变换规程.将纯二维5/3小波变换用于CT图像的无损压缩,实验证明:对于512 dpi×512 dpi尺寸的CT图像,纯二维5/3小波变换无损压缩效果高于二维可分离5/3小波变换,每幅图像可平均节省1 989.9 byte.  相似文献   

15.
高涛  白璘 《电子设计工程》2012,20(14):120-122
文中通过深入研究三维离散小波变换(3D DWT)核心算法并根据序列图像编码的特点,设计并实现了一种适合硬件实现的高效的三维小波变换VLSI结构。编写了相应verilog模型,并进行了仿真和逻辑综合。仿真结果表明行列滤波并行处理并采用流水线设计方法,加快了运算速度,有效降低了片内存储容量。  相似文献   

16.
一种新型基于提升算法的二维离散小波变换结构的实现   总被引:2,自引:0,他引:2  
孟军  魏同立 《电路与系统学报》2003,8(6):139-142,128
在提升算法原理分析的基础上,设计出一种采用提升算法的二维离散小波变换结构,改变了传统的提升算法先行后列的运算方式,将行列运算操作结合起来进行,这样,相比于传统结构,在基本不增加硬件单元的前提下,变换时间减小为原来的75%左右,提高了硬件效率。  相似文献   

17.
为了实现线阵CCD空间相机图像的实时压缩处理,在提升算法的基础上,提出了一种适用于FPGA的二维提升小波变换结构与实现方案.该系统利用FPGA片内的存储资源,采用乒乓操作实现了行列变换之间的数据缓存传输,降低了功耗,提高了硬件利用率和运算速度.并且为了适应硬件实现速度,在进行小波边界处理时不需要额外的边界延拓过程,很大程度上降低了算法的复杂度;整个模块采用verilog HDL语言进行设计,并在QuestaSim下进行了仿真试验.实验结果表明,该系统工作稳定可靠,完全满足实时处理的要求,并适用于JPEG2000的多级二维5/3小波变换.  相似文献   

18.
辛勤  钟艳华  刘春风  潘利明 《现代电子技术》2010,33(18):124-126,130
提升算法的推出使得离散小波变换硬件的快速实现成为可能。翻转结构在提升架构的基础上进一步提高运算速度。在此,对翻转结构的舍入误差进行了分析,在翻转结构的基础上,对提升步骤进行了合并,提出一种有效的DWT硬件实现方案。实验结果表明,通过采用流水线模式提出的这种硬件结构,在关键路径约束的条件下,可以充分利用硬件资源。  相似文献   

19.
Based on B-spline factorization, a new category of architectures for Discrete Wavelet Transform (DWT) is proposed in this paper. The B-spline factorization mainly consists of the B-spline part and the distributed part. The former is proposed to be constructed by use of the direct implementation or Pascal implementation. And the latter is the part introducing multipliers and can be implemented with the Type-I or Type-II polyphase decomposition. Since the degree of the distributed part is usually designed as small as possible, the proposed architectures could use fewer multipliers than previous arts, but more adders would be required. However, many adders can be implemented with smaller area and lower speed because only few adders are on the critical path. Three case studies, including the JPEG2000 default (9, 7) filter, the (6, 10) filter, and the (10, 18) filter, are given to demonstrate the efficiency of the proposed architectures.Chao-Tsung Huang was born in Kaohsiung, Taiwan, R.O.C., in 1979. He received the B.S. degree from the Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C., in 2001. He currently is working toward the Ph.D. degree at the Graduate Institute of Electronics Engineering, National Taiwan University. His major research interests include VLSI design and implementation for signal processing systems.Po-Chih Tseng was born in Tao-Yuan, Taiwan in 1977. He received the B.S. degree in Electrical and Control Engineering from National Chiao Tung University in 1999 and the M.S. degree in Electrical Engineering from National Taiwan University in 2001. He currently is pursuing the Ph.D. degree at the Graduate Institute of Electronics Engineering, Department of Electrical Engineering, National Taiwan University. His research interests include VLSI design and implementation for signal processing systems, energy-efficient reconfigurable computing for multimedia systems, and power-aware image and video coding systems.Liang-Gee Chen received the B.S., M.S., and Ph.D. degrees in electrical engineering from National Cheng Kung University, Tainan, Taiwan, R.O.C., in 1979, 1981, and 1986, respectively.In 1988, he joined the Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C. During 1993–1994, he was a Visiting Consultant in the DSP Research Department, AT&T Bell Labs, Murray Hill, NJ. In 1997, he was a Visiting Scholar of the Department of Electrical Engineering, University of Washington, Seattle. Currently, he is Professor at National Taiwan University, Taipei, Taiwan, R.O.C. His current research interests are DSP architecture design, video processor design, and video coding systems.Dr. Chen has served as an Associate Editor of IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY since 1996, as Associate Editor of the IEEE TRANSACTIONS ON VLSI SYSTEMS since 1999, and as Associate Editor of IEEE TRANSACTIONS CIRCUITS AND SYSTEMS II since 2000. He has been the Associate Editor of the Journal of Circuits, Systems, and Signal Processing since 1999, and a Guest Editor for the Journal of Video Signal Processing Systems. He is also the Associate Editor of the PROCEEDINGS OF THE IEEE. He was the General Chairman of the 7th VLSI Design/CAD Symposium in 1995 and of the 1999 IEEE Workshop on Signal Processing Systems: Design and Implementation. He is the Past-Chair of Taipei Chapter of IEEE Circuits and Systems (CAS) Society, and is a member of the IEEE CAS Technical Committee of VLSI Systems and Applications, the Technical Committee of Visual Signal Processing and Communications, and the IEEE Signal Processing Technical Committee of Design and Implementation of SP Systems. He is the Chair-Elect of the IEEE CAS Technical Committee on Multimedia Systems and Applications, During 2001-2002, he served as a Distinguished Lecturer of the IEEE CAS Society. He received the Best Paper Award from the R.O.C. Computer Society in 1990 and 1994. Annually from 1991 to 1999, he received Long-Term (Acer) Paper Awards. In 1992, he received the Best Paper Award of the 1992 Asia-Pacific Conference on circuits and systems in the VLSI design track. In 1993, he received the Annual Paper Award of the Chinese Engineer Society. In 1996 and 2000, he received the Outstanding Research Award from the National Science Council, and in 2000, the Dragon Excellence Award from Acer. He is a member of Phi Tan Phi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号