首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The enhanced diastolic Ca2+ levels observed in cardiac myocytes from patients with idiopathic dilated cardiomyopathy (DCM) may be either a consequence of functional impairment of sarcoplasmic reticulum calcium-ATPase (SERCA 2) and its regulator protein phospholamban or due to a reduction in the number of SERCA 2 proteins. As different myocardial membrane preparations may lead to different accumulation of proteins, the present study evaluated two different membrane preparations, in human failing and nonfailing myocardium for comparison of SERCA 2 activity and the protein expression of SERCA 2 and phospholamban. Crude membranes and tissue homo-genates without any centrifugation steps were prepared from human nonfailing hearts (donor hearts, NF, n=18) and terminally failing hearts (heart transplant, DCM, n=18). Calsequestrin protein expression was used as an internal control for overall protein expression. In both crude membranes and homogenates maximal SERCA 2 activity (Vmax) was significantly reduced in failing heart preparations (NF crude membranes, 130+/-8; DCM crude membranes, 102+/-5 nmol ATP/mg protein per minute). In contrast, the protein expression of SERCA 2 (NF crude membranes, 488+/-35; DCM crude membranes, 494+/-42; P=0.92), phospholamban (NF crude membranes, 497+/-51; DCM crude membranes, 496+/-45; P=0.98) and calsequestrin (NF crude membranes, 109+/-06; DCM crude membranes, 107+/-08; P=0.84) was unchanged in NF and DCM hearts in both preparation methods. This was also the case when the protein expression was normalized to calsequestrin protein levels. Preparation of sarcoplasmic reticulum in crude membranes led to enhanced purification and consequently higher SERCA 2, phospholamban, and calsequestrin protein levels in crude membranes than in the homogenates, which was paralleled by an increase in SERCA 2 enzyme activity. In conclusion, the altered Ca2+ handling in DCM may be a consequence of reduced SERCA 2 enzyme activity and not the result of differences in protein expression of the Ca2+ regulating proteins SERCA 2, phospholamban, and calsequestrin in human myocardium. The present study emphasizes the importance of different myocardial membrane preparations with respect to quantitative investigations of protein expression and function.  相似文献   

5.
In the nervous system of the marine mollusk Aplysia there are two protein kinase C (PKC) isoforms, the Ca2+-activated PKC Apl I and the Ca2+-independent PKC Apl II. PKC Apl I, but not PKC Apl II is activated by a short-term application of the neurotransmitter serotonin. This may be explained by the fact that purified PKC Apl II requires a higher mole percentage of phosphatidylserine to stimulate enzyme activity than does PKC Apl I. In order to understand the molecular basis for this difference, we have compared the ability of lipids to interact with the purified kinases and with regulatory domain fusion proteins derived from the kinases using a variety of assays including kinase activity, phorbol dibutyrate binding, and liposome binding. We found that a C2 domain fusion protein derived from PKC Apl I binds to lipids constitutively, while a C2 domain fusion protein derived from PKC Apl II does not. In contrast, fusion proteins containing the C1 domains of PKC Apl I and PKC Apl II showed only small differences in lipid interactions. Thus, while the presence of a C2 domain assists lipid-mediated activation of PKC Apl I, it inhibits activation of PKC Apl II.  相似文献   

6.
The suprachiasmatic nuclei (SCN) contain the major 'biological clock' in mammals that controls most circadian rhythms expressed by these animals. The functional importance of protein phosphorylation and intracellular Ca2+ in the mammalian circadian pacemaker is becoming increasingly apparent. Here we report the immunocytochemical localization of the four Ca2+-dependent protein kinase C (PKC) isoforms (alpha, betaI, betaII, gamma) within the SCN of the diurnal murid rodent, Arvicanthis niloticus, and the nocturnal golden hamster. In the SCN of A. niloticus, PKCalpha was the most abundant of the four isoforms. Cells containing PKCalpha were homogeneously distributed throughout the SCN. PKCbetaI cells were sparsely distributed in the perimeter of the SCN and were absent in its central area. PKCbetaII and -gamma were not found in the SCN of A. niloticus. In the SCN of the golden hamster, PKCalpha cells were most heavily concentrated in the dorsomedial region, though some were also present laterally and ventrally. The distribution of arginine-vasopressin (AVP) cells in the SCN overlapped with that of PKC in both species. Species differences in the location of the Ca2+-dependent PKC isoforms suggest differences in function such as the relaying of photic or non-photic information to the clock mechanism, or the synchronization of AVP neurons and their subsequent output signals.  相似文献   

7.
Myotrophin, a novel protein that has been shown to stimulate myocyte growth, has been isolated, purified, and sequenced from the hearts of spontaneously hypertensive rats and dilated cardiomyopathic human tissue. Recently, the cDNA clones encoding myotrophin have been isolated and expressed in Escherichia coli, and the recombinant myotrophin was found to be as biologically and immunologically active as natural myotrophin. The mechanism by which myotrophin stimulates protein synthesis and initiates myocardial hypertrophy is not known. To evaluate the involvement of protein kinase C (PKC) in myotrophin-induced hypertrophy, PKC activity and its distribution in the subcellular fraction were determined in cultured neonatal and adult myocytes. PKC activity was determined by measuring the incorporation of 32P into histone type III-S and PKCepsilon substrate peptide (epsilon(pep)) from [gamma-32P]ATP in neonatal myocytes. Myotrophin significantly stimulated PKC activity in neonatal myocytes and was associated with a significant increase in protein synthesis. The effect of myotrophin on the stimulation of PKC activity and [3H]leucine incorporation was abolished by pretreatment with either staurosporine or H-7, two selective, pharmacological PKC inhibitors. Pretreatment of myocytes with staurosporine also reduced the myotrophin-induced mRNA levels of c-fos and beta-myosin heavy chain. To evaluate the subcellular events whose occurrence was due to myotrophin and translocation of PKC, we studied the effect of genistein, a tyrosine kinase inhibitor, on myotrophin-induced neonatal myocyte growth. Genistein attenuated the [3H]leucine incorporation induced by myotrophin. To define the specificity of the PKC isoform(s) involved in myotrophin-stimulated myocyte growth, both neonatal and adult myocytes were treated with myotrophin, and Western blot analyses were performed by using the antibodies of different PKC isoforms. Results showed that both PKCalpha and PKCepsilon isoforms participated in the myotrophin-induced neonatal myocyte growth, whereas only the PKCepsilon isoform was involved in myotrophin-induced adult myocyte hypertrophy. PKCdelta and PKCzeta do not seem to participate in either neonatal or adult myocyte growth induced by myotrophin. Treatment with antisense oligonucleotides specific for PKCalpha and PKCepsilon isoforms further supported this result. PKCalpha is the major PKC isoform in neonatal myocytes and needs Ca2+ and phospholipids for its activation, and PKCepsilon (the Ca2+-independent PKC isoform) is present in both neonatal and adult myocytes; the 15-mer antisense oligodeoxynucleotides of each were used for this study. Treatment of neonatal myocytes with the PKCalpha and PKCepsilon antisense oligodeoxynucleotides for 5 days significantly reduced Ca2+-dependent and Ca2+-independent PKC activity, respectively, as well as the [3H]leucine incorporation induced by myotrophin. Furthermore, myotrophin-induced PKC activity was primarily located in the particulate fraction and did not result in a concomitant decrease in the cytosolic fraction. Myotrophin does not change PKC isoform expression (both Ca2+ dependent and independent PKC isoforms used in this study) in rat neonatal cardiac fibroblasts. Our data suggest that myotrophin exerts its action on protein synthesis, possibly through a tyrosine kinase-coupled pathway and translocation of PKC from the cytosol to the cell membrane.  相似文献   

8.
The aim of the present investigation was to study the functional alterations in the stomatognathic system following orthodontic-surgical management of skeletal vertical excess problems. The sample comprised 43 patients who received combined orthodontic-surgical treatment including bilateral vertical ramus osteotomy for posterior repositioning and counterclockwise rotation of the mandible (n = 26) or Le Fort I osteotomy for maxillary impaction (n = 17). All subjects were examined within 1 week before operation and 6 months postsurgery. Methods of examination included: (a) evaluation of dysfunction by means of a clinical index, (b) measurement of mandibular range of motion, (c) assessment of the number and intensity of occlusal contacts, and (d) tomographic evaluation of condyle-fossa relationships. The results of the study indicated that postoperatively (a) there was an increase of patients with dysfunction in the mandibular osteotomy group and a decrease of patients with dysfunction in the maxillary osteotomy group; (b) the maximum interincisal opening decreased significantly in the mandibular osteotomy group; (c) there was a significant increase in the number and intensity of occlusal contacts in both groups; and (d) the shortest posterior and anterior interarticular distances increased significantly in the mandibular osteotomy group.  相似文献   

9.
We examined the ability of opsonized zymosan (OPZ) to stimulate translocation of protein kinase C (PKC) isoforms in human neutrophils. Neutrophils express five PKC isoforms (alpha, betaI, betaII, delta, and zeta), but little is known of their individual roles in neutrophil activation. As determined by immunoblotting, OPZ caused a time-dependent translocation of the predominant PKC isoforms (betaII, delta, and zeta) to neutrophil membranes, with a concomitant loss from the cytosol. Maximal translocation of all three isoforms occurred by 3 min. No PKC immunoreactivity was observed in a crude nuclear fraction, but PKC-delta and -zeta were found in the granule fraction after degranulation (10 min). PKC activity (Ca2+-dependent and -independent) increased 50- and 19-fold, respectively, by 10 min in the granules from OPZ-stimulated cells. Curiously, no immunoreactive cPKC (alpha and beta(I/II)) could be localized in the granule fraction to account for the Ca2+-dependent PKC activity. Localization of PKC isoforms in the neutrophil membranes and granules suggests their involvement in the regulation of functional responses triggered by OPZ. PKC isoform translocation to membranes from OPZ-stimulated cells preceded both p47phox (a cytosolic component of the NADPH oxidase) translocation and NADPH oxidase assembly. The presence of both PKC isoforms and p47phox in the membrane was transient, with the loss of p47phox occurring sooner than either the loss of membrane-associated PKC or that of NADPH oxidase activity. The apparent EC50 values for PKC translocation and NADPH oxidase assembly were similar. These data suggest that PKC isoforms regulate the assembly and activation of NADPH oxidase induced by OPZ.  相似文献   

10.
Over the last decade, nursing in the United Kingdom has witnessed a major development and expansion in the number of Clinical Nurse Specialists. These nurses are considered to be experts in their own specialities, have in-depth knowledge and provide a service for patients, relatives and staff. There is, however, a paucity of literature relating to role transition from experienced Staff Nurse to Clinical Nurse Specialist. Using Nicholson's (1984) model of work-role transition and Wanous' (1992) four-stage model of organizational socialization, this study explores the transition of two nurses from experienced Staff Nurses to novice Clinical Nurse Specialists.  相似文献   

11.
12.
The Ca2+-sensitive K+ channel (K(Ca) channel) plays a key role in buffering pressure-induced constriction of small cerebral arteries. An amplified current through this channel has been reported in vascular smooth muscle cells obtained from hypertensive animals, implying that the expression or properties of K(Ca) channels may be regulated by in vivo blood pressure levels. In this study, we investigated this hypothesis and its functional relevance by comparing the properties, expression levels, and physiological role of K(Ca) channels in cerebral resistance arteries from normotensive and genetically hypertensive rats. Whole-cell patch-clamp experiments revealed a 4.7-fold higher density of iberiotoxin-sensitive K(Ca) channel current at physiological membrane potentials in spontaneously hypertensive rat (SHR) compared with Wistar-Kyoto (WKY) rat cerebrovascular smooth muscle cells (n = 18 and 21, respectively). However, additional single-channel analysis in detached patches showed similar levels of unitary conductance, voltage, and Ca2+ sensitivity in K(Ca) channels from WKY and from SHR membranes. In contrast, Western analysis using an antibody directed against the K(Ca) channel alpha-subunit revealed a 4.1-fold increase in the corresponding 125-kD immunoreactive signal in cerebrovascular membranes from SHR compared with WKY rats. The functional impact of this enhanced K(Ca) channel expression was assessed in SHR and WKY rat pial arterioles, which were monitored by intravital microscopy through in situ cranial windows. Progressive pharmacological block of K(Ca) channels by iberiotoxin (0.1 to 100 nmol/L) dose-dependently constricted pial arterioles from SHR and WKY rats (n = 6 to 8). The arterioles in SHR constricted 2- to 4-fold more intensely, and vasospasm occurred in some vessels. These data provide the first direct evidence that elevated levels of in situ blood pressure induce K(Ca) channel expression in cerebrovascular smooth muscle membranes. This homeostatic mechanism may critically regulate the resting tone of cerebral arterioles during chronic hypertension. Furthermore, the overexpression of distinct K+ channel types during specific cardiovascular pathologies may provide for the upregulation of novel disease-specific membrane targets for vasodilator therapies.  相似文献   

13.
Stimulation of human submandibular gland cells with carbachol, inositol trisphosphate (IP3), thapsigargin, or tert-butylhydroxyquinone induced an inward current that was sensitive to external Ca2+ concentration ([Ca2+]e) and was also carried by external Na+ or Ba2+ (in a Ca2+-free medium) with amplitudes in the order Ca2+ > Ba2+ > Na+. All cation currents were blocked by La3+ and Gd3+ but not by Zn2+. The IP3-stimulated current with 10 microM 3-deoxy-3-fluoro-D-myo-inositol 1,4,5-triphosphate and 10 mM 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid in the pipette solution, showed 50% inactivation in <5 min and >5 min with 10 and 1 mM [Ca2+]e, respectively. The Na+ current was not inactivated, whereas the Ba2+ current inactivated at a slower rate. The protein kinase inhibitor, staurosporine, delayed the inactivation and increased the amplitude of the current, whereas the protein Ser/Thr phosphatase inhibitor, calyculin A, reduced the current. Thapsigargin- and tert-butylhydroxyquinone-stimulated Ca2+ currents inactivated faster. Importantly, these agents accelerated the inactivation of the IP3-stimulated current. The data demonstrate that internal Ca2+ store depletion-activated Ca2+ current (ISOC) in this salivary cell line is regulated by a Ca2+-dependent feedback mechanism involving a staurosporine-sensitive protein kinase and the intracellular Ca2+ pump. We suggest that the Ca2+ pump modulates ISOC by regulating [Ca2+]i in the region of Ca2+ influx.  相似文献   

14.
Plasma membrane Ca2+ ATPase (PMCA) pump isoforms 2, 3, and 1CII are expressed in large amounts in the cerebellum of adult rats but only minimally in neonatal cerebellum. These isoforms were almost undetectable in rat neonatal cerebellar granule cells 1-3 days after plating, but they became highly expressed after 7-9 days of culturing under membrane depolarizing conditions (25 mM KCl). The behavior of isoform 4 was different: it was clearly detectable in adult cerebellum but was down-regulated by the depolarizing conditions in cultured cells. 25 mM KCl-activated L-type Ca2+ channels, significantly increasing cytosolic Ca2+. Changes in the concentration of Ca2+ in the culturing medium affected the expression of the pumps. L-type Ca2+ channel blockers abolished both the up-regulation of the PMCA1CII, 2, and 3 isoforms and the down-regulation of PMCA4 isoform. When granule cells were cultured in high concentrations of N-methyl-D-aspartic acid, a condition that increased cytosolic Ca2+ through the activation of glutamate-operated Ca2+ channels, up-regulation of PMCA1CII, 2, and 3 and down-regulation of PMCA4 was also observed. The activity of the isoforms was estimated by measuring the phosphoenzyme intermediate of their reaction cycle: the up-regulated isoforms, the activity of which was barely detectable at plating time, accounted for a large portion of the total PMCA activity of the cells. No up-regulation of the sarcoplasmic/endoplasmic reticulum calcium pump was induced by the depolarizing conditions.  相似文献   

15.
A variety of intracellular signaling pathways can modulate the properties of voltage-gated ion channels. Some of them are well characterized. However, the diffusible second messenger mediating suppression of M current via G protein-coupled receptors has not been identified. In superior cervical ganglion neurons, we find that the signaling pathways underlying M current inhibition by B2 bradykinin and M1 muscarinic receptors respond very differently to inhibitors. The bradykinin pathway was suppressed by the phospholipase C inhibitor U-73122, by blocking the IP3 receptor with pentosan polysulfate or heparin, and by buffering intracellular calcium, and it was occluded by allowing IP3 to diffuse into the cytoplasm via a patch pipette. By contrast, the muscarinic pathway was not disrupted by any of these treatments. The addition of bradykinin was accompanied by a [Ca2+]i rise with a similar onset and time to peak as the inhibition of M current. The M current inhibition and the rise of [Ca2+]i were blocked by depletion of Ca2+ internal stores by thapsigargin. We conclude that bradykinin receptors inhibit M current of sympathetic neurons by activating phospholipase C and releasing Ca2+ from IP3-sensitive Ca2+ stores, whereas muscarinic receptors do not use the phospholipase C pathway to inhibit M current channels.  相似文献   

16.
Megakaryocytes undergo a unique differentiation program, becoming polyploid through repeated cycles of DNA synthesis without concomitant cell division. We have shown previously that phorbol 12-myristate 13-acetate (PMA) induces the Dami human megakaryocytic cell line to become polyploid and to express platelet-specific proteins, including von Willebrand factor (vWF) and glycoprotein Ib (GpIb). Phorbol esters are thought to regulate gene expression principally through the activation of protein kinase C (PKC), a family of structurally related kinases with potentially unique activation requirements and substrate specificities. A survey of PKC isoforms in Dami cells revealed that, by both Western and Northern analyses, PKC isoforms alpha, beta, delta, epsilon, eta, theta, and zeta were reproducibly detected. PKC-gamma was not detected. In order to define the role of individual PKC isoforms in megakaryocytic maturation, PMA and 2-deoxyphorbol 13-phenylacetate 20-acetate (dPPA), a putative selective activator of the PKC-beta 1 isotype, were compared for their effects on Dami cell maturation. Treatment with either dPPA or PMA caused Dami cells to cease proliferating, to become polyploid, and to express vWF. We also examined dPPA and PMA for their ability to activate and to downregulate expression of different PKC isoforms. Fifteen-minute treatment with PMA resulted in the translocation of PKC isoforms alpha, epsilon, and theta from the cytosolic to the membrane fraction; twenty-four hour treatment resulted in the downregulation of these isoforms. In contrast, dPPA was found to be a potent activator of PKC-epsilon alone and exhibited weaker effects on alpha and theta. These data suggest that PKC isoforms beta, delta, eta, and zeta, which appear not to be activated by either phorbol ester, are unlikely to be primarily involved in megakaryocytic maturation in response to these agents. The isoforms that are translocated by both phorbol esters-PKC isoforms alpha and theta, and particularly epsilon-are more likely to transduce the signals that stimulate Dami cell differentiation.  相似文献   

17.
We and others have previously cloned several cDNAs of human cardiac troponin T (cTnT), demonstrating the multiplicity of cTnT isoforms in the human heart. Four of them named cTnT1, 2, 3 and 4 result from a combinatorial alternative inclusion of 30- and 15-nucleotides in the 5' coding region of the cDNAs. In failing human ventricles, increased expression of cTnT4 has been reported at the protein level. More recent RT-PCR experiments showed increased expression of fetal-type splicing products in the 5' region, one of them corresponding to cTnT1. To clarify this issue, we examined the accumulation of the 4 cTnT mRNA and protein species in left ventricular specimens at the time of heart transplantation, and in control left ventricular samples using RNase protection and Western blotting. In all samples, cTnT3 was the major mRNA isoform, cTnT4 a minor isoform while cTnT1 and cTnT2 mRNAs were present but barely detectable. At the protein level, cTnT3, 4 and 1 were detected with the same relative abundance as that seen at the mRNA level. In addition, we detected a fourth TnT species of very low abundance corresponding either to a skeletal or to a "short" cardiac TNT isoform. Compared to controls, increased levels of cTnT4 mRNA and protein were detected in only half the failing ventricles independently of the cause of failure, suggesting that this increase may not be a general characteristic of left ventricular failure but instead could be related to stress. Unexpectedly, we found a decrease in cTnT1 protein expression in all failing ventricular samples studied, compared to controls.  相似文献   

18.
Acute ethanol administration induces significant modifications both in secretive and formative membranes of rat liver Golgi apparatus. The decrease in glycolipoprotein secretion and their retention into the hepatocyte contribute to the pathogenesis of alcohol-induced fatty liver. Molecular and cellular mechanisms behind the ethanol-induced injury of the liver secretory pathway are not yet completely defined. In this study on intact livers from ethanol-treated rats, the involvement of the Golgi compartment in the impairment of hepatic glycolipoprotein secretion has been correlated with changes in the expression level, subcellular distribution and enzymatic activity of protein kinase C (PKC) isoforms. Acute ethanol exposure determined a translocation of classic PKCs and delta isoform from the cytosol to cis and trans Golgi membranes, the site of glycolipoprotein retention in the hepatic cell. A marked stimulation of cytosolic epsilon PKC activity was observed throughout the period of treatment. The presence of activated PKC isozymes at the Golgi compartment of alcohol-treated rat livers may play a role in hepatic secretion and protein accumulation. Direct and indirect effects of ethanol consumption on PKC isozymes and Golgi function are discussed.  相似文献   

19.
The contribution of coagulation factors and fibrinolytic variables to the development of ischaemic arterial disease is still not clearly established. The PRIME study is a prospective cohort study of myocardial infarction in men aged 50-59 years and recruited from three MONICA field centers in France (Lille, Strasbourg and Toulouse) and the center in Northern Ireland (Belfast). Baseline examination included measurement of plasma fibrinogen, factor VII, and PAI-1 activity in over 10,500 participants. We investigated the associations of these haemostatic variables with cardiovascular risk factors, prevalent atherosclerotic disease and geographical area. Fibrinogen level increased with age, smoking, waist-to-hip ratio, LDL-cholesterol, and it decreased with educational level, leisure physical activity, alcohol intake and HDL-cholesterol. Factor VII activity increased with body mass index, waist-to-hip ratio, triglycerides. HDL- and LDL-cholesterol. PAI-1 activity increased with body mass index, waist-to-hip ratio, triglycerides, alcohol intake, smoking, and decreased with leisure physical activity. PAI-1 level was higher in diabetic subjects than in subjects without diabetes. Cardiovascular risk factors explained 8%, 9%, and 26% of the total variance in fibrinogen, factor VII, and PAI-1, respectively. Compared with participants without prevalent cardiovascular disease, those with previous myocardial infarction (n = 280), angina pectoris (n = 230), or peripheral vascular disease (n = 19) had significantly higher levels of fibrinogen. but those with stroke (n = 67) had not. PAI-1 activity showed a similar pattern of association. The odds ratio for cardiovascular disease associated with a rise of a one standard deviation in fibrinogen and PAI-1 was 1.31 (95% confidence interval: 1.20 to 1.42, p <0.001) and 1.38 (95% confidence interval: 1.27 to 1.49, p<0.001), respectively. After adjustment for cardiovascular risk factors, these associations were attenuated but remained highly significant. There was no significant association between factor VII activity and prevalent cardiovascular disease. Fibrinogen level and, to a lesser extent, factor VII and PAI-1 activity were higher in Northern Ireland than France after adjustment for the main cardiovascular risk factors. These geographical variations are consistent with the 2 to 3-fold higher incidence of myocardial infarction in Northern Ireland than France. Our results provide further epidemiological evidence for a possible role of fibrinogen and PAI-1 in the pathogenesis of coronary heart disease.  相似文献   

20.
We have previously shown that alpha1-adrenergic activation inhibited beta-adrenergic-stimulated L-type Ca2+ current (I(Ca)). To determine the role of protein kinase C (PKC) in this regulation, the inositol trisphosphate pathway was bypassed by direct activation of PKC with 4beta-phorbol 12-myristate 13-acetate (PMA). To minimize Ca2+-induced Ca2+ inactivation, Ba2+ current (I(Ba)) was recorded through Ca2+ channels in adult rat ventricular myocytes. We found that PMA (0.1 micromol/L) consistently inhibited basal I(Ba) by 40.5+/-7.4% and isoproterenol (ISO, 0.1 micromol/L)-stimulated I(Ba) by 48.9+/-7.8%. These inhibitory effects were not observed with the inactive phorbol ester analogue alpha-phorbol 12,13-didecanoate (0.1 micromol/L). To identify the PKC isozymes that mediate these PMA effects, we intracellularly applied peptide inhibitors of a subclass of PKC isozymes, the C2-containing cPKCs. These peptides (betaC2-2 and betaC2-4) specifically inhibit the translocation and function of C2-containing isozymes (alpha-PKC, betaI-PKC, and betaII-PKC), but not the C2-less isozymes (delta-PKC and epsilon-PKC). We first used the pseudosubstrate peptide (0.1 micromol/L in the pipette), which inhibits the catalytic activity of all the PKC isozymes, and found that PMA-induced inhibition of ISO-stimulated I(Ba) was reduced to 16.8+/-7.4% but was not affected by the scrambled pseudosubstrate peptide. The effects of PMA on basal and ISO-stimulated I(Ba) were then determined in the presence of C2-derived peptides or control peptides. When the pipette contained 0.1 micromol/L of betaC2-2 or betaC2-4, PMA-induced inhibition of basal I(Ba) was 26.1+/-4.5% and 23.6+/-2.2%, respectively. Similarly, ISO-stimulated I(Ba) was inhibited by 29.9+/-6.6% and 29.3+/-7.8% in the presence of betaC2-2 and betaC2-4, respectively. In contrast, there was no significant change in the effect of PMA in the presence of control peptides, scrambled betaC2-4, or pentalysine. Finally, PMA-induced inhibition of basal and ISO-stimulated I(Ba) was almost completely abolished in cells dialyzed with both betaC2-2 and betaC2-4. Together, these data suggest a role for C2-containing isozymes in mediating PMA-induced inhibition of L-type Ca2+ channel activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号