首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Loss of heterozygosity (LOH) of chromosome 10q is observed in approximately 40% of endometrial cancers. Mutations in PTEN/MMAC1, a gene recently isolated from the 10q23 region, are responsible for two dominantly inherited neoplastic syndromes, Cowden disease and Bannayan-Zonana syndrome. Somatic mutations of this gene have also been detected in sporadic cancers of the brain, prostate and breast. To investigate the potential role of this putative tumor suppressor gene in endometrial carcinogenesis as well, we examined 46 primary endometrial cancers for LOH at the 10q23 region, and for mutations in the entire coding region and exon-intron boundaries of the PTEN/MMAC1 gene. LOH was identified in half of the 38 informative cases, and subtle somatic mutations were detected in 15 tumors (33%). Our results suggest that of the genes studied so far in endometrial carcinomas, PTEN/MMAC1 is the most commonly mutated one, and that inactivation of both copies by allelic loss and/or mutation, a pattern that defines genes as "tumor suppressors," contributes to tumorigenesis in endometrial cancers.  相似文献   

2.
Deletions involving chromosome 10q23 occur frequently in prostatic carcinomas. Recently, a novel tumour suppressor gene, PTEN, mapping to this interval, has been identified. Mutation or deletion of PTEN has been observed in a proportion of prostate cancer cell lines; however, primary prostate carcinomas have not been studied. We have investigated the involvement of PTEN in primary prostatic adenocarcinomas using a panel of 51 matched normal and prostate tumour DNAs. We first determined the proportion of tumours with allele loss at loci in 10q23 which span the region containing the PTEN gene. Our results show that LOH involving 10q23 is common in primary prostate carcinomas. Twenty-five of 51 (49%) tumours showed loss of heterozygosity (LOH) over the region spanning the PTEN locus. We next directly analysed the PTEN gene for mutations of the coding region using single strand conformation polymorphism (SSCP) and sequence analyses. Of those tumours with LOH, only a single tumour was found to carry a missense mutation in PTEN. No mutations in PTEN were identified in tumours without LOH. Our results suggest either that mutation of PTEN is a late event in prostate tumorigenesis, or that another tumour suppressor gene important in prostate cancer may lie close to PTEN in 10q23.  相似文献   

3.
The majority of familial medullary thyroid neoplasms are associated with germ-line mutations of the RET proto-oncogene, yet very little is known about the mechanisms involved in the pathogenesis of familial and sporadic nonmedullary thyroid tumors. A subset of thyroid tumors have loss of heterozygosity of chromosome 10q22-23, a region harboring the gene responsible for Cowden disease, an autosomal dominant hamartoma syndrome associated with thyroid and breast tumors. PTEN/MMAC1/TEP1 codes for a dual-specificity phosphatase and is likely a tumor suppressor gene. We sought to determine the PTEN status in a series of epithelial thyroid neoplasms. We studied 95 sporadic thyroid tumors, of which 39 were papillary thyroid carcinomas (PTCs), 12 were follicular carcinomas, 9 were anaplastic carcinomas, 5 were Hürthle cell carcinomas, 21 were nonfunctioning follicular adenomas, and 9 were Hürthle cell adenomas. Direct sequencing of PCR-amplified products was performed for all nine exons of PTEN. Two polymorphic markers, one located in intron 8 and another, a dinucleotide repeat marker, AFMa086wg9, located within intron 2, were analyzed in paired blood-tumor DNA samples to assess hemizygous deletions of PTEN. We found a somatic frameshift mutation in one PTC, which was expected to generate a premature stop codon 2 amino acids downstream. Twenty-six % of informative benign tumors (four follicular adenomas and three Hürthle cell adenomas) and only 3 of 49 (6.1%) informative malignant tumors (one PTC, one follicular carcinoma, and one anaplastic carcinoma) showed evidence of hemizygous deletion of PTEN (P = 0.046). We conclude that a subset of thyroid tumors have somatic deletions of the PTEN gene, predominantly the benign forms, and that small intragenic mutations of PTEN are infrequent in thyroid tumors. We speculate that other mechanisms of PTEN inactivation, rather than small intragenic mutations, might occur in the hemizygously deleted samples and act as the "Knudson second hit." Alternatively, other tumor suppressor genes mapping to chromosome 10q22-23 could be the actual targets for such deletions and thus represent the various hits in the pathway of multistep carcinogenesis.  相似文献   

4.
A new tumor suppressor gene PTEN/MMAC1 was recently isolated at chromosome 10q23 and found to be inactivated by point mutation or homozygous deletion in glioma, prostate and breast cancer. PTEN/MMAC1 was also identified as the gene predisposing to Cowden disease, an autosomal dominant cancer predisposition syndrome associated with an increased risk of breast, skin and thyroid tumors and occasional cases of other cancers including bladder and renal cell carcinoma. We screened 345 urinary tract cancers by microsatellite analysis and found chromosome 10q to be deleted in 65 of 285 (23%) bladder and 15 of 60 (25%) renal cell cancers. We then screened the entire PTEN/MMAC1 coding region for mutation in 25 bladder and 15 renal cell primary tumors with deletion of chromosome 10q. Two somatic point mutations, a frameshift and a splicing variant, were found in the panel of bladder tumors while no mutation was observed in the renal cell carcinomas. To screen for homozygous deletion, we isolated two polymorphic microsatellite repeats from genomic BAC clones containing the PTEN/MMAC1 gene. Using these new informative markers, we identified apparent retention at the gene locus indicative of homozygous deletion of PTEN/MMAC1 in four of 65 bladder and 0 of 15 renal cell tumors with LOH through chromosome 10q. Identification of the second inactivation event in six bladder tumors with LOH of 10q implies that the PTEN/MMAC1 gene is occasionally involved in bladder tumorigenesis. However, the low frequency of biallelic inactivation suggests that either PTEN/MMAC1 is inactivated by other mechanisms or it is not the only target of chromosome 10q deletion in primary bladder and renal cell cancer.  相似文献   

5.
Since their discovery, protein tyrosine phosphatases have been speculated to play a role in tumor suppression because of their ability to antagonize the growth-promoting protein tyrosine kinases. Recently, a tumor suppressor from human chromosome 10q23, called PTEN or MMAC1, has been identified that shares homology with the protein tyrosine phosphatase family. Germ-line mutations in PTEN give rise to several related neoplastic disorders, including Cowden disease. A key step in understanding the function of PTEN as a tumor suppressor is to identify its physiological substrates. Here we report that a missense mutation in PTEN, PTEN-G129E, which is observed in two Cowden disease kindreds, specifically ablates the ability of PTEN to recognize inositol phospholipids as a substrate, suggesting that loss of the lipid phosphatase activity is responsible for the etiology of the disease. Furthermore, expression of wild-type or substrate-trapping forms of PTEN in HEK293 cells altered the levels of the phospholipid products of phosphatidylinositol 3-kinase and ectopic expression of the phosphatase in PTEN-deficient tumor cell lines resulted in the inhibition of protein kinase (PK) B/Akt and regulation of cell survival.  相似文献   

6.
We report three new mutations in PTEN, the gene responsible for Cowden disease in five patients with Bannayan-Riley-Ruvalcaba syndrome from three unrelated families. This finding confirms that Cowden disease, a dominant cancer predisposing syndrome, and Bannayan-Riley-Ruvalcaba syndrome, which includes macrocephaly, multiple lipomas, intestinal hamartomatous polyps, vascular malformations, and pigmented macules of the penis, are allelic disorders at the PTEN locus on chromosome 10q.  相似文献   

7.
Gorlin syndrome is an autosomal dominant disorder characterized by multiple basal cell carcinomas, medulloblastomas, ovarian fibromas, and a variety of developmental defects. All affected individuals share certain key features, but there is significant phenotypic variability within and among kindreds with respect to malformations. The gene (NBCCS) maps to chromosome 9q22, and allelic loss at this location is common in tumors from Gorlin syndrome patients. Two recessive cancer-predisposition syndromes, xeroderma pigmentosum group A (XPAC) and Fanconi anemia group C (FACC), map to the NBCCS region; and unusual, dominant mutations in these genes have been proposed as the cause of Gorlin syndrome. This study presents cytogenetic and molecular characterization of germ-line deletions in one patient with a chromosome 9q22 deletion and in a second patient with a deletion of 9q22-q3l. Both have typical features of Gorlin syndrome plus additional findings, including mental retardation, conductive hearing loss, and failure to thrive. That Gorlin syndrome can be caused by null mutations (deletions) rather than by activating mutations has several implications. First, in conjunction with previous analyses of allelic loss in tumors, this study provides evidence that associated neoplasms arise with homozygous inactivation of the gene. In addition, dominant mutations of the XPAC and FACC1 genes can be ruled out as the cause of Gorlin syndrome, since the two patients described have null mutations. Finally, phenotypic features that show variable expression must be influenced by genetic background, epigenetic effects, somatic mutations, or environmental factors, since these two patients with identical alterations (deletions) of the Gorlin syndrome gene have somewhat different manifestations of Gorlin syndrome.  相似文献   

8.
A potential tumor suppressor gene, STK11 , encoding a serine threonine kinase, has recently been identified on chromosome 19p13. Germ-line mutations of this gene have been found in patients with Peutz-Jeghers syndrome (PJS). To further investigate the relevance of STK11 mutations in PJS, we analyzed its coding sequence in nine patients and identified two deletions and three missense mutations. Because intestinal carcinomas have been observed to develop in association with PJS, we analyzed tumors from 71 patients for allelic deletions (loss of heterozygosity) and STK11 gene mutations, to elucidate the etiological role of STK11 gene in sporadic colorectal cancer. Loss of heterozygosity, evaluated using the microsatellite D19S886, was observed in 10 of 52 informative cases. No somatic mutations were detected except for a missense alteration in one tumor. Our data indicate the heterogeneity of PJS and the infrequent involvement of the STK11 gene in colorectal cancer.  相似文献   

9.
Mutations of the human putative protein tyrosine phosphatase (PTEN/MMAC1) gene at chromosome 10q23 have been found frequently in type I endometrial carcinomas. Endometrioid adenocarcinoma is the most frequent histology seen in patients with clinically determined synchronous endometrial and ovarian carcinomas. We report a high incidence of PTEN/MMAC1 mutations and 10q23 loss of heterozygosity (LOH) in patients with synchronous endometrial and ovarian carcinomas. Paraffin-embedded precision microdissected tumors were analyzed for 10 matched synchronous endometrial and ovarian cancers and 11 matched control metastatic endometrial cancers. Single-stranded conformation polymorphism analysis was used to screen for mutations in all tumors and corresponding normal lymphocyte DNA. LOH was determined using a panel of four microsatellite markers within the PTEN/MMAC1 locus. PTEN/MMAC1 mutations were found in 43% (9 of 21) of the endometrial cancers studied, similarly represented in the clinically synchronous group (5 of 10 or 50%) and the advanced metastatic group (4 of 11; 36%; P = 0.53). In two of the five cases of clinically synchronous cancers, identical or progressive PTEN mutations were found in both the endometrial and ovarian cancers, suggesting that the ovarian tumor is a metastasis from the endometrial primary. PTEN/MMAC1 mutations in the advanced endometrial cancers were similar in the corresponding metastases. In one case, the mutation was seen in only one of two metastatic lymph nodes. The LOH analysis demonstrated 55% LOH in at least one PTEN/MMAC1 marker. These findings suggest that the putative tumor suppressor gene PTEN/MMAC1 may be a viable molecular marker to differentiate synchronous versus metastatic disease in a subset of clinically synchronous endometrial and ovarian carcinomas.  相似文献   

10.
Cytogenetic and loss of heterozygosity studies have suggested the presence of at least one tumor suppressor gene on chromosome 10 involved in the formation of high grade gliomas. Recently, the PTEN gene, also termed MMAC1 or TEP1, on chromosomal band 10q23 has been identified. Initial studies revealed mutations of PTEN in limited series of glioma cell lines and glioblastomas. In order to systematically evaluate the involvement of PTEN in gliomas, we have analysed the entire PTEN coding sequence by SSCP and direct sequencing in a series of 331 gliomas and glioneuronal tumors. PTEN mutations were detected in 20/142 glioblastomas, 1/7 giant cell glioblastomas, 1/2 gliosarcomas, 1/30 pilocytic astrocytomas and 2/22 oligodendrogliomas. No PTEN mutations were detected in 52 astrocytomas, 37 oligoastrocytomas, three subependymal giant cell astrocytomas, four pleomorphic xanthoastrocytomas, 15 ependymomas, 16 gangliogliomas and one dysembryoplastic neuroepithelial tumor. In addition, all tumors were examined for the presence of homozygous deletions of the PTEN gene; these were detected in 7 glioblastomas that did not have PTEN mutations. Therefore, PTEN mutations occur in approximately 20% of glioblastomas but are rare in lower grade gliomas. These findings confirm that PTEN is one of the chromosome 10 tumor suppressor genes involved in the development of glioblastomas.  相似文献   

11.
A novel tumor suppressor gene, PTEN/MMAC1, has been recently shown to be mutated in gliomas, breast, prostate, kidney cancers and melanomas. Loss-of-heterozygosity studies in melanoma have suggested the presence of at least one chromosome 10q locus lost early in tumor progression. In this study, we screened 45 melanoma cell lines and 17 paired uncultured metastatic melanoma and peripheral blood specimens for PTEN/ MMAC1 alterations using PCR-SSCP and direct sequencing. We found nine melanoma cell lines with homozygous deletions (five with intragenic loss) and four cell lines with mutations (one nonsense and one frameshift; two intronic); from among our uncultured melanoma specimens, we found one tumor with a somatic 17 bp duplication in exon 7 leading to a premature stop codon and one tumor with a possible homozygous deletion. Furthermore, we have identified a novel intragenic polymorphism within intron 4 of PTEN/MMAC1. Taken together, these data suggest that PTEN/MMAC1 may be a chromosome 10q tumor suppressor important in melanoma tumor formation or progression.  相似文献   

12.
Juvenile polyps are present in a number of Mendelian disorders, sometimes in association only with gastrointestinal cancer [juvenile polyposis syndrome (JPS)] and sometimes as part of known syndromes (Cowden, Gorlin and Banayan-Zonana) in association with developmental abnormalities, dysmorphic features or extra-intestinal tumours. Recently, a gene for JPS was mapped to 18q21.1 and the candidate gene DPC4 (SMAD4) was shown to carry frameshift mutations in some JPS families. We have analysed eight JPS families for linkage to DPC4. Overall, there was no evidence for linkage to DPC4; linkage could be excluded in two of the eight pedigrees and was unlikely in two others. We then tested these eight families and a further 13 familial and sporadic JPS cases for germline mutations in DPC4. Just one germline DPC4 mutation was found (in a familial JPS patient from a pedigree unsuitable for linkage analysis). Like all three previously reported germline mutations, this variant occurred towards the C-terminus of the DPC4 protein. However, our patient's mutation is a missense change (R361C); somatic missense mutations in DPC4 have been reported previously in tumours. We therefore confirm DPC4 as a cause of JPS, but show that there is considerable remaining, uncharacterized genetic heterogeneity in this disease.  相似文献   

13.
Prostate cancer is a major cause of cancer death among elderly men in America, Europe, and Japan. However, the molecular mechanism of carcinogenesis is not yet well characterized. Frequent loss of heterozygosity (LOH) on chromosome 10q was reported in prostate cancer, and a candidate tumor suppressor gene, PTEN, was isolated on chromosome band 10q23.3. To investigate the genetic alterations of PTEN, we examined 45 primary prostate cancer specimens. LOH at the PTEN locus was observed in two (11.1%) of 18 tumors. However, no mutations were observed in any of the primary prostate cancers. These data suggest that mutation of the PTEN gene does not play a major role in prostate carcinogenesis of Japanese patients.  相似文献   

14.
Loss of heterozygosity (LOH) on chromosome 10 is the most frequent genetic alteration associated with the evolution of malignant astrocytic tumors and it may involve several loci. The tumor suppressor gene PTEN (MMAC1) on chromosome 10q23 is mutated in approximately 30% of glioblastomas (WHO Grade IV). In this study, we assessed the frequency of PTEN mutations in primary glioblastomas, which developed clinically de novo, and in secondary glioblastomas, which evolved from low-grade (WHO Grade II) or anaplastic astrocytomas (WHO Grade III). Nine of 28 (32%) primary glioblastomas contained a PTEN mutation and an additional case showed a homozygous PTEN deletion. This indicates that after overexpression/amplification of the EGF receptor, loss of PTEN function is the most common alteration in primary glioblastomas. In this series, 5 of 28 (18%) primary glioblastomas showed both a PTEN mutation and EGFR amplification. In contrast, only 1 of 25 (4%) secondary glioblastomas contained a PTEN mutation, and none of them showed a homozygous PTEN deletion. The secondary glioblastoma with a PTEN mutation developed from an anaplastic astrocytoma that already carried the mutation. The observation that secondary glioblastomas have a p53 mutation as a genetic hallmark but rarely contain a PTEN mutation supports the concept that primary and secondary glioblastomas develop differently on a genetic level.  相似文献   

15.
Tumor cells are cells that have acquired damage to genes that directly regulate their cell cycles. In the multistep process leading to colorectal carcinoma, the adenoma-carcinoma sequence is characterized by progressive accumulation of genetic abnormalities (K-ras oncogene mutation, allelic deletion on chromosome 5q, 18q, 17p). In a hereditary non-polyposis syndrome (Lynch syndrome II) and in about a quarter of the cases of sporadic colorectal cancer there is a DNA micro-instability which contributes to the acquisition of mutations that cause loss of tumor-suppressor function. The p53 tumor-suppressor gene is the most frequently mutant gene in human cancer. In colorectal cancer cells missense p53 mutations and allelic deletion on chromosomal locus 17p13.1 are found with very high frequency. One of biological roles of p53 gene is to ensure that, in response to genotoxic damage, cells arrest in G1 and attempt to repair their DNA before it is replicated. In addition, p53 is required for apoptosis in response to severe DNA damage, included the damage induced by chemotherapeutics drugs and ionizing radiation. The loss of p53 function results in genomic instability and has been implicated in the evolution of normal cells into cancer cells.  相似文献   

16.
Carney complex (CC), Peutz-Jeghers syndrome (PJS), Cowden disease (CD), and Bannayan-Zonana syndrome (BZS) share clinical features, such as mucocutaneous lentigines and multiple tumors (thyroid, breast, ovarian, and testicular neoplasms), and autosomal dominant inheritance. A genetic locus has been identified for CC on chromosome 2 (2p16), and the genes for PJS, CD, and BZS were recently identified; genetic heterogeneity appears likely in both CC and PJS. The genes for PJS and CD/BZS, STK11/LKB1 and PTEN, respectively, may act as tumor suppressors, because loss of heterozygosity (LOH) of the PJS and CD/BZS loci has been demonstrated in tumors excised from patients with these disorders. We studied 2 families with CC in whom the disease could not be shown to segregate with polymorphic markers from the 2p16 locus. Their members presented with lesions frequently seen in PJS and the other lentiginosis syndromes. We also tested 16 tumors and cell lines established from patients with CC for LOH involving the PJS and CD/BZS loci. DNA was extracted from peripheral blood, tumor cell lines, and tissues and subjected to PCR amplification with primers from microsatellite sequences flanking the STK11/LKB1 and PTEN genes on 19p13 and 10q23, respectively, and a putative PJS locus on 19q13. All loci were excluded as candidates in both families with LOD scores less than 2 and/or by haplotype analysis. LOH for these loci was not present in any of the tumors that were histologically identical to those seen in PJS. The overall rate of LOH for the PJS and CD/BZS loci in tumors from patients with CC was less than 10%. We conclude that despite substantial clinical overlap among CC, PJS, CD, and BZS, LOH for the STK11 and PTEN loci is an infrequent event in CC-related tumors. Linkage analysis excluded the PJS and CD/BZS loci on chromosomes 19 (19p13 and 19q13) and 10 (10q23) from harboring the gene defect(s) responsible for the phenotype in these 2 families.  相似文献   

17.
Germ-line mutations in the LKB1 gene on chromosome 19p are responsible for most cases of the Peutz-Jeghers syndrome, in which intestinal hamartomas are associated with elevated risks of several cancer types, including breast cancer. We have evaluated the role of somatic mutations in LKB1 in breast cancer. Of 40 informative primary breast cancers, 3 showed loss of heterozygosity on chromosome 19p in the vicinity of LKB1, and no somatic mutations of LKB1 were observed in 62 primary breast cancers and 17 established breast cancer cell lines. The results indicate that mutations in LKB1 do not play an important role in the development of sporadic breast cancer.  相似文献   

18.
Peutz-Jeghers syndrome (PJS) is an autosomal dominant disease characterized by mucocutaneous pigmentation and hamartomatous polyps. There is an increased risk of benign and malignant tumors in the gastrointestinal tract and in extraintestinal tissues. One PJS locus has been mapped to chromosome 19p13.3; a second locus is suspected on chromosome 19q13.4 in a minority of families. The PJS gene on 19p13.3 has recently been cloned, and it encodes the serine/threonine kinase LKB1. The gene, which is ubiquitously expressed, is composed of 10 exons spanning 23 kb. Several LKB1 mutations have been reported in heterozygosity in PJS patients. In this study, we screened for LKB1 mutations in nine PJS families of American, Spanish, Portuguese, French, Turkish, and Indian origin and detected seven novel mutations. These included two frameshift mutations, one four-amino-acid deletion, two amino-acid substitutions, and two splicing errors. Expression of mutant LKB1 proteins (K78I, D176N, W308C, and L67P) and assessment of their autophosphorylation activity revealed a loss of the kinase activity in all of these mutants. These results provide direct evidence that the elimination of the kinase activity of LKB1 is probably responsible for the development of the PJS phenotypes. In two Indian families, we failed to detect any LKB1 mutation; in one of these families, we previously had detected linkage to markers on 19q13.3-4, which suggests locus heterogeneity of PJS. The elucidation of the molecular etiology of PJS and the positional cloning of the second potential PJS gene will further elucidate the involvement of kinases/phosphatases in the development of cancer-predisposing syndromes.  相似文献   

19.
Loss of heterozygosity (LOH) at chromosome band 10q23 occurs frequently in a wide variety of human tumors. A recently identified candidate tumor suppressor gene, PTEN located on 10q23, is mutated in multiple advanced cancers. To explore whether PTEN is associated with human squamous cell carcinoma of the head and neck (SCCHN), DNAs from both normal muscle and tumor tissue in 19 SCCHN were used for detecting LOH at chromosome 10q23 and mutational analysis of PTEN by direct polymerase chain reaction (PCR)-DNA sequencing. LOH at 10q23 was identified in 6/15 SCCHN. Mutation of PTEN was identified in 3/19 SCCHN. Of these 3 patients, 2 had stage IV disease; the third patient, with recurrent, metastatic and stage III disease, showed a 36 bp germline heterozygous deletion within intron 7. Furthermore, a missense mutation at codon 501 (TCT --> TTT: Ser --> Phe) in exon 8 was also found in tumor from the same patient. Our results suggest that PTEN may play a role in the genesis of some SCCHNs.  相似文献   

20.
Autosomal recessive juvenile parkinsonism (AR-JP) is a distinct clinical and genetic entity characterized by selective degeneration of nigral dopaminergic neurons and young-onset parkinsonism with remarkable response to levodopa. Recently, we mapped the gene locus for AR-JP to chromosome 6q25.2-q27 by linkage analysis and we identified a novel large gene, Parkin, consisting of 12 exons from this region; mutations of this gene were found to be the cause of AR-JP in two families. Now we report results of extensive molecular analysis on 34 affected individuals from 18 unrelated families with AR-JP. We found four different homozygous intragenic deletional mutations, involving exons 3 to 4, exon 3, exon 4, and exon 5 in 10 families (17 affected individuals). In addition to the exonic deletions, we identified a novel one-base deletion involving exon 5 in two families (2 affected individuals). All mutations so far found were deletional types in which large exonic deletion accounted for 50% (17 of 34) and the one-base deletion accounted for 6% (2/34); in the remaining, no homozygous mutations were found in the coding regions. Our findings indicate that loss of function of the Parkin protein results in the clinical phenotype of AR-JP and that subregions between introns 2 and 5 of the Parkin gene are mutational hot spots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号