首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 50 毫秒
1.
由于多视角点云的重叠区域点云密度过大,导致出现占用过多的存储空间和降低计算机效率等问题.针对此问题,提出一种基于重叠区域分割和分组随机精简的Kinect多视角点云精简算法.首先,用包围盒子提取相邻点云的重叠区域内的点云,将它们分割成重叠区域点云和非重叠区域点云.其次,用一个分组随机精简算法对重叠区域点云进行精简.最后,...  相似文献   

2.
针对原始点云模型中存在大量冗余数据问题,提出一种基于快速点特征直方图(FPFH)特征提取的点云精简算法,有效兼顾了特征信息保留和整体完整性。算法首先查找并保留原始模型的边缘点;然后计算非边缘点的FPFH值,由此得到点云的特征值,并进行排序且划分出特征区域和非特征区域,保留特征区域内的点;最后将非特征区域划分为k个子区间,对每个子区间用改进的最远点采样算法进行采样。将该算法与最远点采样算法、非均匀网格法、k-means算法和自适应曲率熵算法进行对比实验,并用标准化信息熵评价方法对精简后的点云进行评价,实验表明其优于其他精简算法。此外,可视化结果也表明,该算法能够在保证精简模型完整性的同时,较好地保留住点云大部分特征信息。  相似文献   

3.
陈辉  黄晓铭  刘万泉 《控制与决策》2020,35(12):2986-2992
由非接触式扫描方法获得的点云数据存在大量的冗余点,为便于模型重构, 提出一种新的基于动态网格k邻域搜索的点云精简方法.首先,对点云进行k邻域搜索,在k邻域搜索过程中采用动态网格的方法快速寻找k邻域点;然后,根据数据点的k邻域计算点的曲率、点与邻域点法向夹角的平均值、点与邻域点的平均距离,并利用这3个参数定义特征判别参数和特征阈值,比较大小,对特征点进行提取;最后,利用包围盒法对非特征点进行二次精简,将精简后的点云与特征点拼接,实现精简目的.实验结果表明,所提出方法与其他k邻域搜索方法相比,提高了计算效率,并且将特征提取与二次精简方法相结合,既可保留模型的几何特征,又能避免空洞区域的产生,在精度和速度上都取得了较好的效果.  相似文献   

4.
为解决目前点云精简算法适应性差的问题,提出一种基于特征显著性的自适应精简算法.通过对点云FPFH(fast point feature histograms)特征聚类生成特征单词;在考虑单词间差异的基础上,融合单词内部的特征分散程度,形成显著性词典,由词典软编码单点特征,得到点云特征显著性;在均匀网格基础上,若网格内的...  相似文献   

5.
提出一种特征保留的点云数据自适应精简算法。该算法首先构造散乱点云数据的局部拓扑信息,通过一种改进的二次栅格法快速建立K邻域,由此估算点的邻域弯曲度,再进行分类。算法在保留特征点后对其余点应用自适应精简距离进行阈值精简,故算法不仅可以完整保存实物模型整体轮廓,而且能够最大限度地保证模型区域特征。数值实验结果表明,该算法能够得到不错的精简效果,且具有较小的计算时间复杂度。  相似文献   

6.
自适应K-means聚类的散乱点云精简   总被引:1,自引:0,他引:1       下载免费PDF全文
目的 点云精简是曲面重建等点云处理的一个重要前提,针对以往散乱点云精简算法的精简结果存在失真较大、空洞及不适用于片状点云的问题,提出一种自适应K-means聚类的点云精简算法。方法 首先,根据k邻域计算每个数据点的曲率、点法向与邻域点法向夹角的平均值、点到邻域重心的距离、点到邻域点的平均距离,据此运用多判别参数混合的特征提取方法识别并保留特征点,包括曲面尖锐点和边界点;然后,对点云数据建立自适应八叉树,为K-means聚类提供与点云密度分布相关的初始化聚类中心以及K值;最后,遍历整个聚类,如果聚类结果中含有特征点则剔除其中的特征点并更新聚类中心,计算更新后聚类中数据点的最大曲率差,将最大曲率差大于设定阈值的聚类进行细分,保留最终聚类中距聚类中心最近的数据点。结果 在聚类方面,将传统的K-means聚类和自适应K-means聚类算法应用于bunny点云,后者在聚类的迭代次数、评价函数值和时间上均优于前者;在精简方面,将提出的精简算法应用于封闭及片状两种不同类型的点云,在精简比例为1/5时fandisk及saddle模型的精简误差分别为0.29×10-3、-0.41×10-3和0.037、-0.094,对于片状的saddle点云模型,其边界收缩误差为0.030 805,均小于栅格法和曲率法。结论 本文提出的散乱点云精简算法可应用于封闭及片状点云,精简后的数据点分布均匀无空洞,对片状点云进行精简时能够保护模型的边界数据点。  相似文献   

7.
8.
海量点云精简既要考虑算法的复杂度,又要考虑精简结果的效果。根据三维扫描仪形成的点云特点,提出将空间点云划分为扫描层平面点云,从而将空间问题转化为平面问题。通过平面内Angl的简单计算获得点曲率,从而简化算法复杂度;通过引进距离参数Dis防止精简"大孔洞"的出现;通过综合考虑点的曲率和点间的距离,形成一个判别点是否被删除的标准,修改该判别标准公式中的系数,可以得到不同的精简效果。试验结果证明,该算法对海量点云的精简实践可行,具有复杂度低、数据精简率高等特点。  相似文献   

9.
点云选择与精简是三维扫描系统中应对背景数据、冗余采样、分布不均匀 等问题的必要后处理步骤。针对定制低成本三维扫描系统的需求,传统方法仍有很多局限性。 这是由于研究领域未提供支持套索UI 接口的点云选择算法;传统点云精简方法侧重曲率自 适应分布,无法保证平坦区域的均衡分布。论文提出一种支持套索UI 接口的点云选择算法, 通过构建套索形状矩形覆盖与点云八叉树剔除大部分点在多边形内的判断;提出一种基于 Poisson-disk 采样的均衡分布的点云精简算法,并以采样点邻域球布尔交运算来定义曲面上 的圆盘半径度量,具有保持尖锐边特征及边界的性质。实验结果表明,论文方法能够较好满 足低成本三维扫描系统中点云删减处理的需求。  相似文献   

10.
在逆向工程中,点云精简是一个重要的步骤,精简的质量直接关系到后续曲面重构的效率。分析了常用的几种点云精简方法,并针对现有方法的不足,提出一种改进的方法。该方法使用 PCA主成分析法,利用点的k邻域点集拟合切平面,将点到该平面距离作为判断特征点的依据进行初始精简,再利用均匀网格的方法对初始精简后的点云进行重采样处理,保留部分关键特征点。通过初始精简和后期精简两步法完成对点云的精简步骤,并通过实验验证了该方法的有效性。  相似文献   

11.
基于平面提取的点云数据分割算法   总被引:1,自引:0,他引:1  
针对点云数据处理过程中边缘不易定位准确的问题,提出一种抗噪性强的点云数据分割新算法。该算法以点云的区域分布特性为基础,通过对数据进行主成分分析(PCA),构建点云平面基元检测的新模型。定义多个平面相似度准则并结合多个阈值判断,进行平面的区域增长,实现点云数据的准确分割。实验结果表明,该方法能快速稳定地识别场景物体各个平面,得到较为准确的分割结果,且具有较强的抗噪性能。  相似文献   

12.
基于OpenCL的ICP点云并行配准算法   总被引:1,自引:0,他引:1  
针对当前点云配准算法效率过低的问题,运用OpenCL实现了基于通用GPU的kd-tree并行搜索算法,进而实现了ICP点云并行配准算法。首先建立目标点云的三维空间kd-tree,并使用OpenCL并行加速其搜索算法;然后将并行加速的kd-tree搜索算法运用于ICP算法,同时针对ICP算法的其他部分也使用OpenCL并行加速以确保配准过程尽可能高效。通过实验验证了所实现算法的高效性以及健壮性。  相似文献   

13.
多目标演化算法的研究目标是使算法种群快速收敛并均匀分布于问题的非劣最优域。根据个体的非支配排序级数设计了一种自适应变异步长的柯西变异算子,对变异越界处理进行了改进;并定义和使用动态拥挤距离来保持群体中个体的均匀分布。最后通过对测试函数的实验,验证了算法的可行性和有效性。  相似文献   

14.
传统Otsu阈值法对图像分割缺乏一定鲁棒性的不足,将Otsu阈值法的平方欧氏距离用绝对值距离代替得到一种新的图像阈值化分割准则,提出了基于绝对值距离的图像阈值分割新算法,最后给出其参数估计方法.实验结果表明,分割新算方法是有效的,能够获得比传统Otsu方法更好的分割结果.  相似文献   

15.
一种基于散乱点云的边界提取算法   总被引:1,自引:0,他引:1  
点云边界是曲面的重要特征之一,边界线的快速准确提取对于提高曲面重构的效率和质量具有重要意义。首先,采用基于kd-tree搜索的方法建立点云空间拓补关系,进行K邻域快速搜索,以采样点及其K邻域作为局部型面参考依据拟合微切平面,将其向微切平面投影;其次,在微切平面上建立局部坐标系,并对投影点进行参数化,根据邻域点集在采样点处的场力大小之和可以表示点集的平均作用来识别点云的边界特征点;最后,从提高边界线连续性的角度,利用NURBS曲线插值方法连接边界线。实验结果表明,该算法可以快速、有效地提取出点云的边界特征点,并得到C2连续的边界线,满足曲面重构的要求。  相似文献   

16.
针对皮肤病变图像分割问题,提出一种自动适应目标形状的U型皮肤病变图像分割算法.对原始病变图片依次进行灰度化、归一化和限制对比度自适应直方图均衡化处理,提高前景与背景的对比度;将预处理后的图片输入到U型网络中进行训练,该网络将调制可变形卷积块融合到U-Net的编码器和解码器中,使其自动适应病变目标的比例和形状,让复杂的病...  相似文献   

17.
传统的三角网生长法进行点云数据表面模型重建时,搜索第三点耗时太长,导致重建效率很低。采用自适应八叉树划分算法将点云数据分割成相互覆盖的子域,在每个子域内进行三角网格重建,避免网格拼接的过程;采用最大角最小化原则进行三角网格优化;并运用三角面片定向的方法进行网格法向量一致化处理。实验结果表明,该方法极大地提高了表面模型重建的效率,形成的网格质量也很好,能够较好地体现模型的细节特征,鲁棒性好。  相似文献   

18.
为解决三维点云数据在白噪声、数据不对应的情况下的配准问题,提出基于高斯似然估计因子分析的点云配准算法。采用因子分析法对点云数据进行表示,利用极大似然估计的方法求得因子载荷矩阵,从而完成对带噪声点云的配准。仿真实验表明,与CDP算法和Go-ICP算法相比,该算法不会陷入局部最小值,在快速精确配准和稳定性方面具有良好的鲁棒性。  相似文献   

19.
针对图像分割在自然场景中,分割精度不高和细节保持不够敏感,提出一种自适应烟花算法下的多维模糊C均值彩色图像分割算法.结合动态时间弯曲思想,以邻域像素相似特点构造弯曲曲线,得到多维相似距离和新的目标函数.在自适应烟花寻优算法下,找到最优聚类中心,最终达到对图像分割效果.实验表明,该算法与同类算法相比,对彩色图像有良好的分...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号