共查询到20条相似文献,搜索用时 85 毫秒
1.
针对蚁群算法容易陷入局部最优解及搜索时间长等不足,引入一种基于连续空间的禁忌搜索算法,并将其与蚁群算法相结合,提出了一种引入禁忌搜索策略的蚁群算法,以求解连续对象优化问题。经测试验证了该算法不仅跳出局部最优解的能力更强,而且能较快地收敛到全局最优解,表明算法的有效性。 相似文献
2.
3.
《模式识别与人工智能》2014,(6)
针对现有连续函数优化蚁群算法对自变量的初始区间存在敏感度问题,提出泛区间搜索的理念.通过在网格策略上加入新元素——自调整定义域的机制、自适应的蚁群规模、自适应的信息素增加强度和自适应的网格划分份数,提出泛区间搜索的连续函数优化蚁群算法.该算法可根据现有区间判断最优解的方位,实现全实数范围内的广度搜索.仿真实验表明该算法具备鲁棒性,在初始区间不含最优解的条件下也能找到最优解,且收敛速度和计算准确性受区间变化的影响较小. 相似文献
4.
基于遗传算法的混合蚁群算法 总被引:1,自引:0,他引:1
提出了一种新的求连续空间最优值的蚁群算法。结合遗传算法和蚁群算法各自的优点以及两种算法融合基础,提出了遗传算法融入到蚁群算法融合中的两种新策略,第一种策略是先利用遗传算法具有比较强的全局搜索能力,在大范围内寻找一组解,然后以此为基础,用蚁群算法快速寻找最优解X*best;另一种策略是利用遗传算法交叉操作产生蚁群算法中的新旅行路径,以此提高蚁群算法的全局搜索能力。用上述策略构造两个基于遗传算法的混合遗传算法。用测试函数Rosenbrock和测试函数Shubert验证了混合蚁群算法的正确性。 相似文献
5.
一种连续空间优化问题的蚁群算法及应用 总被引:10,自引:0,他引:10
针对随机优化算法收敛困难及搜索时间较长的问题,提出一种求解连续空间优化问题的蚁群算法,为蚁群算法在连续空间中的应用提供了一个可行的方案。给出了该算法的详细定义及实现步骤,并将该算法应用于多变量函数优化及热工控制系统控制器参数优化,仿真结果表明:该算法具有良好的全局优化性能,能加快收敛速率,解决了随机优化算法收敛困难的问题,并提高寻优精度。 相似文献
6.
基于邻域搜索的改进最大最小蚁群算法 总被引:2,自引:0,他引:2
针对蚁群算法求解旅行商问题时易陷入局部最优的问题,提出一个改进的混合最大最小蚁群算法,并应用于求解旅行商问题.上述算法设计了一种新的信息素更新模型,单个蚂蚁每走一步就进行信息素局部更新,在所有的蚂蚁搜索一周后,最优路径蚂蚁进行全局信息素更新.提出一种新的邻域搜索模型,将邻域大小设置为原来的一半,提高了计算的效率.在每个蚂蚁的一个周期循环后,使用邻域搜索算法优化最优解的路径长度.仿真结果表明,改进算法具有较高的求解精度和收敛速度. 相似文献
7.
蚁群优化算法的收敛性分析 总被引:4,自引:0,他引:4
有关蚁群优化算法收敛性分析的研究还很少.不利于进一步改进其算法.为此,较详细地分析了用蚁群优化算法求解TSP问题的收敛性.证明了当0〈q0〈1时.算法能够收敛到最优解.分析了封闭路径性质、启发函数、信息素和q0对收敛性的影响.据此给出了提高算法收敛速度的几点结论. 相似文献
8.
可控搜索偏向的二元蚁群算法 总被引:2,自引:0,他引:2
蚁群算法按照信息素轨迹产生的偏向对解空间进行搜索.当前改进蚁群算法性能的主要方法是提高种群的多样性,少有对搜索偏向进行控制.本文以可控搜索偏向作为研究的出发点,通过对至今最优信息素更新方式的分析,得出了从任意代到算法收敛没有发现较优解的概率下限.并以此为基础,把访问量与蚂蚁数量的关系作为控制偏向的依据,在兼顾提高种群多样性的前提下,设计了可控搜索偏向的二元蚁群算法.通过多个函数的测试以及0—1多背包问题的应用,其实验结果表明该算法有较好的搜索能力以及较快的收敛速度. 相似文献
9.
符号执行作为一种基本的程序分析技术,已被广泛应用于软件测试领域。研究表明,即使在现有的查询优化技术的支持下,约束求解也仍然是符号执行中最耗时的部分。猜测符号执行的思想是将多次约束求解合并成一次求解,从而减少约束求解消耗的时间。但是,猜测的成功率受猜测深度和路径搜索方向的影响,尤其是路径搜索的方向在较大程度上决定了整体猜测的成功率。因此,引导路径搜索向成功率高的方向进行,对提高猜测符号执行的整体效率至关重要。在猜测符号执行的路径搜索过程中引入蚁群算法,根据节点条件信息初次确定分支路径的权重,在多次迭代中根据分支路径的覆盖情况更新权重,通过权重决定路径搜索的方向。实验表明,该方法有效提升了猜测符号执行的效率。 相似文献
10.
求解连续空间优化问题的量子蚁群算法 总被引:12,自引:1,他引:12
针对蚁群算法只适用于离散优化问题的局限件和收敛速度慢的问题,提出了求解连续空间优化问题的量子蚁群算法.该算法每只蚂蚁携带一组表示蚂蚁当前位置信息的量子比特;首先根据基于信息素强度和可见度构造的选择概率,选择蚂蚁的前进目标;然后采用量子旋转门更新蚂蚁携带的量了比特,完成蚂蚁的移动;采用量子非门实现蚂蚁所在位置的变异,增加位置的多样性;最后根据移动后的位置完成蚁群信息素强度和可见度的更新.该算法将量子比特的两个概率幅部看作蚂蚁当前的位置信息,在蚂蚁数日相同时,可使搜索空间加倍.以函数极值问题和神经网络权值优化问题为例,验证了算法的有效性. 相似文献
11.
《计算机应用与软件》2017,(7)
路径规划是机器人关键技术之一。利用改进的蚁群算法进行机器人的路径规划。针对传统蚁群算法收敛速度慢且易陷入局部最优解的缺陷,在Ant Colony System算法基础上,对每代蚁群动态随机统计分析,提取最优、平均和最差的蚂蚁信息,构成自适应算子用于局部信息素的自适应更新。仿真实验结果证明该自适应算子在平衡增加收敛速度和陷入局部最优解矛盾的问题中是有效的。 相似文献
12.
基于改进蚁群算法的聚类分析 总被引:2,自引:0,他引:2
聚类在数据挖掘、统计学、机器学习等很多领域都有很大应用.聚类问题可以归结为一个优化问题.蚁群算法(Ant Colony Algorithm)已成功地解决了许多组合优化的难题.介绍一种蚁群聚类算法,并进行了优化,提出一种改进的蚁群聚类算法.它改进了蚂蚁搜索解的方法,并引入均匀交叉算子,将蚁群算法和遗传算法融合.它提高进化速度,有效改善了蚁群算法易于过早地收敛于非最优解的缺陷.仿真实验取得了较好的结果. 相似文献
13.
牟廉明 《计算机应用与软件》2011,28(11)
扩展旅行商问题是根据实际需要对传统旅行商问题的一种延伸和拓展,在实际问题中有许多有趣的应用。提出一种新的扩展旅行商问题(子旅行商问题),传统旅行商问题仅仅是子旅行商问题的一种特例。然后根据子旅行商问题的定义对蚁群系统算法进行改造,设计了一种有效的求解子旅行商问题的蚁群算法,并根据子旅行商问题的特点设计了一种高效的邻域局部搜索技术来提高解的质量。最后在10个TSPLIB范例上进行比较实验。结果表明:改进的蚁群算法能够有效求解提出的子旅行商问题,设计的邻域局部搜索技术是有效的。 相似文献
14.
《计算机应用与软件》2014,(1)
针对目前蚁群算法在搜索过程花费时间长且易出现局部最优化等现象,提出一种基于改进全局信息素更新效率的蚁群算法。通过在蚁群算法中引入"精英策略",让算法的搜索具有一定的方向性,并且在此基础上对信息素初始值的定义与对算法中的挥发因子ρ的取值进行改进,从而缩短算法的搜索时间。通过验证,改进后的算法相比一般的蚁群算法具有更好的搜索效率与较高的精确性,更适用于比较大型的TSP问题,在路径搜索领域具有较好的发展前景。 相似文献
15.
为了进一步提高蚁群算法的收敛性能和搜索能力,利用遗传学的交叉和变异操作提出了一种改进的蚁群算法—G-蚁群算法,在每一代的搜索中对当前解和最优解进行交叉变异,以扩大解的搜索空间。通过对解决TSP(Traveling Salesman Problem)问题的实验表明,G-蚁群算法在收敛速度和解的全局性上有更优的性能。 相似文献
16.
通过将遗传算法中的交叉、变异操作与蚁群算法中的协同模型进行结合,提出了一种基于混合蚁群算法的DNA编码序列设计方案.实验表明,该算法具有较高的收敛速度,能为DNA计算提供可靠的编码序列. 相似文献
17.
毛嘉琪 《计算机应用与软件》2021,38(5):300-306
针对基本蚁群算法收敛速度慢,易陷入局部最优解等问题,提出一种静态障碍环境下的改进蚁群算法.利用A*算法来设定信息素初始值,提高算法初始阶段搜索效率;采用新的信息素更新规则,并且动态调整启发函数和信息素挥发速率,加快算法的收敛速度,扩大搜索空间.仿真实验表明,与其他算法在相同情况下比较,改进算法在路径相同的情况下拥有较快... 相似文献
18.
《计算机应用与软件》2014,(6)
在无线网络中,当由节点频繁移动而引起通信链路发生故障时,路由协议需要对其进行修复,才能保证正常通信。现有路由修复机制存在控制开销大和时延长的不足,而且大多数为针对AODV(Ad Hoc On-demand Distance Vector Routing)路由算法的修复,难以充分保证链路性能,并且存在链路重构后链路再次失效的缺点。基于此,提出一种基于蚁群路由算法的局部修复算法。首先,选取稳定性高的节点发起路由修复,以降低链路修复后的不稳定;其次,将修复范围限定在较小的局部范围内以减小控制开销和时延。仿真表明,改进的路由局部修复算法明显地提高了链路的稳定性,缩短了修复时间,降低了路由开销。 相似文献
19.
现有图像降维方法中特征信息被过多压缩,从而影响图像分类效果。提出IC-ACO算法,利用蚁群算法来解决图像分类问题。算法充分提取并保留图像的各种形态特征。利用蚁群优化算法在特征集中自动挖掘有效特征和特征值,构建各类分类规则,从而实现图像的分类识别。在真实的车标图像数据集上的实验结果表明,IC-ACO算法比其他类似算法具有更高的分类识别率。 相似文献
20.
基于蚁群优化的分类算法的研究 总被引:1,自引:0,他引:1
蚁群优化是人工智能领域中群体智能分支之一,已经成功地应用于旅行推销员,作业调度,路由选择等优化问题上,但用它解决数据挖掘问题还是一个新的研究课题.对Parepinelli等人提出的基于ACO分类算法进行了改进,采用了不同的启发函数和不同的分类条件选择方法,提高了分类准确率及时间效率,并进行了理论分析及实验证明. 相似文献