首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 215 毫秒
1.
Complex and oriented ZnO nanostructures   总被引:7,自引:0,他引:7  
Extended and oriented nanostructures are desirable for many applications, but direct fabrication of complex nanostructures with controlled crystalline morphology, orientation and surface architectures remains a significant challenge. Here we report a low-temperature, environmentally benign, solution-based approach for the preparation of complex and oriented ZnO nanostructures, and the systematic modification of their crystal morphology. Using controlled seeded growth and citrate anions that selectively adsorb on ZnO basal planes as the structure-directing agent, we prepared large arrays of oriented ZnO nanorods with controlled aspect ratios, complex film morphologies made of oriented nanocolumns and nanoplates (remarkably similar to biomineral structures in red abalone shells) and complex bilayers showing in situ column-to-rod morphological transitions. The advantages of some of these ZnO structures for photocatalytic decompositions of volatile organic compounds were demonstrated. The novel ZnO nanostructures are expected to have great potential for sensing, catalysis, optical emission, piezoelectric transduction, and actuations.  相似文献   

2.
This review provides a background on the structure and properties of ZnO nanostructures. ZnO nanostructures are advantageous for many applications in sensing, photocatalysis, functional textiles, and cosmetic industries, which are described in this review. Previous work using UV Visible (UV–vis) spectroscopy and scanning electron microscopy (SEM) for ZnO nanorod growth analysis in-solution and on a substrate for determination of optical properties and morphology is discussed, as well as their results in determining the kinetics and growth mechanisms. From this literature review, it is understood that the synthesis process greatly affects nanostructures and properties; and hence, their applications. In addition, in this review, the mechanism of ZnO nanostructure growth is unveiled, and it is shown that by having greater control over their morphology and size through such mechanistic understanding, the above-mentioned applications can be affected. The contradictions and gaps in knowledge are summarized in order to highlight the variations in results, followed by suggestions for how to answer these gaps and future outlooks for ZnO nanostructure research.  相似文献   

3.
Recently, ZnO nanostructures with various morphologies have been synthesized with different structure directing agents. Among these works, little reports have been focused on the syntheses of the ZnO nanostructures at nearly neutral pH and relatively low temperature. This work explores a novel structure-directing agent, tris(hydroxymethyl)aminomethane (tris), for one-pot synthesis of hexagonal ZnO nanosheets at nearly neutral pH (i.e., 7.3) and low temperature (i.e., 80 degrees C). From the XRD and TEM results, the obtained ZnO nanosheets possess the perfect single crystalline structures. The tris molecule acts not only as the hydroxide anion generator, but also as the surface modification agent, as evidenced by the FT-IR spectrum. The yield of the products can be up to about 1.0 g per pot, indicating the industrial prospects for its large-scale and low-cost synthesis. The mechanism of nucleation and growth of the ZnO nanosheets has been proposed. The obtained ZnO nanosheets own the sharp strong fluorescence at 590 nm, which can be attributed to the defects on the surface of the ZnO nanostructures. In virtue of the fluorescent properties, the ZnO nanosheets have been successfully used for cell imaging, suggesting their promising clinic and biomedical applications.  相似文献   

4.
Wang RC  Hsu CC  Chen SJ 《Nanotechnology》2011,22(3):035704
Well-aligned amorphous carbon nanotube (a-CNT) and porous ZnO/C core-shell nanorod (NR) arrays were fabricated for the first time by a proposed deposition-etching-evaporation (DEE) route. The arrays were prepared by deposition of carbon on the surface of well-aligned ZnO NR arrays by thermal decomposition of acetone followed by spontaneous etching and evaporation of core-ZnO. By utilizing the decomposition of acetone as well as distinct degrees of interaction between intermediate products and ZnO, well-aligned nonporous ZnO/C core-shell NR, porous ZnO/C core-shell NR, and a-CNT arrays were separately prepared by varying the working temperature from 400 to 700?°C. Scanning electron microscopy and high-resolution transmission electron microscopy show that the thickness of carbon shells increases from 3 to 10 nm with the increase in working temperature. Raman spectra demonstrate slight sp(2) bonds of carbon, indicating small graphite regions embedded in amorphous carbon nanoshells. The E(2) peaks of ZnO reduce with the increase in substrate temperature. Photoresponse measurements of ZnO/C NR arrays shows enhancement of both photoresponsivity and response velocity, and the interference of humidity with regard to photosensing is effectively reduced by the capping of carbon nanoshells. The work not only provides an effective route to improve the photosensing of semiconductor nanomaterials for practical applications, but also sheds light on preparing various hollow carbon and porous ZnO/C core-shell nanostructures with distinct morphologies by employing the routes presented in the paper on diverse ZnO nanostructures for optoelectrochemical applications.  相似文献   

5.
Morphology-tuned ZnO microcrystals can be prepared by oxidizing zinc metal substrates in aqueous solution using hydrothermal technique. Some typical ZnO growth morphologies such as nanorod superstructures, nanorod arrays, microspheres, hierarchical nanostructures, and split crystals have been chemically fabricated. These microscopic shapes can be finely controlled by selecting Zn(NO3)2 concentration and solvent. A conceptual model was proposed to explain the formation of the as-prepared ZnO structures by selecting proper kinetic environments. This one-step, wet-chemical approach is controllable and reproducible, which can be conveniently transferred to industrial applications.  相似文献   

6.
Photodetectors based on photoconductivity effect are usually driven by an external power source. A self-powered photodetector can be powered by incident light using the photovoltaic effect. Here, photoelectrochemical cells with periodically aligned ZnO/CdS nanowire arrays as photoanodes were fabricated and investigated for detecting UV and visible light. At zero bias, this self-powered UV–visible photodetector showed high responsivities of 35.4 and 23.2 mA/W for UV and visible light, a fast rise time of 0.18 s, and a decay time of 0.32 s. The spectral responses of the self-powered photodetectors based on ZnO/CdS nanowire arrays exhibited superior photoresponse in both UV and visible regions in comparison with ZnO nanowire film and ZnO nanowire arrays. The high photosensing performance originates from the excellent light trapping ability at broadband wavelengths and the high charge collection efficiency of the highly ordered ZnO/CdS nanowire arrays. The results indicate that the ZnO/CdS heterojunctions with periodic nanostructures provide a facile frame for UV–visible detecting applications.  相似文献   

7.
The wide-gap semiconductor ZnO with nanostructures such as nanoparticle, nanorod, nanowire, nanobelt, nanotube has high potential for a variety of applications. This article reviews the fundamentals of one-dimensional ZnO nanostructures, including processing, structure, property, application and their processing-microstructure-property correlation. Various fabrication methods of the ZnO nanostructures including vapor-liquid-solid process, vapor-solid growth, solution growth, solvothermal growth, template-assisted growth and self-assembly are introduced. The characterization and properties of the ZnO nanostructures are described. The possible applications of these nanostructures are also discussed.  相似文献   

8.
One-dimensional (1D) zinc oxide (ZnO) nanostructures have been extensively and intensively studied for several decades not only for their extraordinary chemical and physical properties, but also for their current and future different electronic and optoelectronic device applications. This review provides a brief overview of the progress of different synthesis methods and applications of 1D-ZnO nanostructures. Morphology of ZnO nanostructures grown by various methods and progress in the optical properties are briefly described. Using low-temperature photoluminescence (LTPL) study, detailed informations about the defect states and impurity of such nanostructures are reported. Improvement of field emission properties by modifying the edge of 1D-ZnO nanostructures is briefly discussed. Applications such as different sensors, field effect transistor, light-emitting diodes (LEDs), and photodetector are briefly reviewed. ZnO has large exciton binding energy (60 meV) and wide band gap (3.37 eV), which could lead to lasing action based on exciton recombination. As semiconductor devices are being aggressively scaled down, ZnO 1D nanostructures based resistive switching (RS) memory (resistance random access memory) is very attractive for nonvolatile memory applications. Switching properties and mechanisms of Ga-doped and undoped ZnO nanorods/NWs are briefly discussed. The present paper reviews the recent activities of the growth and applications of various 1D-ZnO nanostructures for sensor, LED, photodetector, laser, and RS memory devices.  相似文献   

9.
Zinc oxide’s (ZnO) physical and chemical properties make it a viable and extremely attractive compound to use in a variety of nanotechnology applications. Some of these applications include biomedical, energy, sensors, and optics. As the research in ZnO nanostructures continue to grow, it has inspired a whole host of new innovative applications. Complementing its unique chemical qualities, it also has a simple crystal-growth technology and offers significantly lower fabrication costs when compared to other semiconductors used in nanotechnology. Several processes have been developed in order to synthesize high quality ZnO nanostructures—specifically in the case of nanowires. Here we offer a comprehensive review on the growth methods currently employed in research, industry, and academia to understand what protocols are available to meet specific needs in nanotechnology. Methods examined include: the vapor–liquid–solid, physical vapor deposition, chemical vapor deposition, metal–organic chemical vapor deposition, and the hydrothermal-based chemical approach. Each of these methods is discussed and their strengths and weaknesses are analyzed with objective comparison metrics. In addition, we study the current state-of-the-art applications employing ZnO nanostructures at their core. A historical perspective on the evolution of the field and the accompanying literature are also presented.  相似文献   

10.
一维纳米结构材料因其优异的电、光及场发射特性,在光电器件、场发射器件等方面具有重要的应用价值而备受关注。ZnO因具有优异的化学及热稳定性,并且其一维纳米结构具有极大的场增强因子,因而在场发射器件阴极中有良好的应用前景。首先简要介绍了ZnO的结构与性质,并重点介绍了ZnO一维纳米材料的常用制备技术及其在场发射领域的研究进展。  相似文献   

11.
Recent studies on the growth of ZnO nanostructures and their optical properties were reviewed. Using different methods, a variety of ZnO nanostructures, including quantum dots nanotowers, nanotubes, nanorods, nanowires, and nanosheets, displaying zero, one, and two dimensions, have been synthesized. The growth of ZnO low-dimensional nanostructures has been demonstrated. Their optical properties have been studied by means of room-temperature photoluminescence spectra, low-temperature photoluminescence spectra, temperature-dependent photoluminescence spectra, and pressure-dependent photoluminescence spectra. The optical properties can be adjusted by the surface features of ZnO low-dimensional nanostructures. The strong exciton emission has been observed in some nanostructures, showing promising potential in nanodevice applications.  相似文献   

12.
Controlled ZnO nanostructures were synthesized via spin-coating and in situ thermal decomposition processing using ZnO paster with/without zinc acetate as precursor. The perovskite CH3NH3PbI3 solar cells (PSCs) based on these ZnO nanostructures were fabricated and their photovoltaic performances have also been investigated. Effects of zinc acetate concentration on morphologies of ZnO nanostructures and the photovoltaic properties of corresponding PSCs have been discussed. Interestingly, the morphologies of ZnO nanostructures were varied from separate nanoparticles to interconnect net-like nanostructures and the space of ZnO nanoparticles became large when the concentration of zinc acetate was increased from 0 to 0.13 M. The space and the connection degree of ZnO nanostructure obtained from 0.05 M zinc acetate are the best choice for perovskite infiltration and charge transport, which leads to corresponding cells have highest power conversion efficiencies (PCE) of 9.30 %. Post-treatment of ZnO nanostructures improved further Voc and FF, leading to PCE to 13.1 %.  相似文献   

13.
In spite of having several advantages such as low cost, high chemical stability, and environmentally safe and benign synthetic as well as operational procedures, the full potential of carbon dots (CDs) is yet to be explored as photosensitizers due to the challenges associated with the fabrication of well‐arrayed CDs with many other photocatalytic heterostructures. In the present study, a unique combination of metal–organic framework (MOF)‐decorated zinc oxide (ZnO) 1D nanostructures as host and CDs as guest species are explored on account of their potential application in photoelectrochemical (PEC) water splitting performance. The synthetic strategy to incorporate well‐defined nitrogen‐doped carbon dots (N‐CDs) arrays onto a zeolitic imidazolate framework‐8 (ZIF‐8) anchored on ZnO 1D nanostructures allows a facile unification of different components which subsequently plays a decisive role in improving the material's PEC water splitting performance. Simple extension of such strategies is expected to offer significant advantages for the preparation of CD‐based heterostructures for photo(electro)catalytics and other related applications.  相似文献   

14.
We fabricated the vertically-aligned zinc oxide (ZnO)/silicon (Si) double nanostructures by simple processes using the metal-assisted chemical etching and a subsequent hydrothermal synthesis, and their optical property was investigated. For efficient antireflection characteristics, Si nanostructures were optimized by changing the size of the dewetted silver (Ag) at different etching times. The thermally dewetted Ag nanoparticles or semi-island films as metal catalysts were controlled by the Ag film thickness and dewetting temperature. To form the ZnO/Si double nanostructures, ZnO nanorods were synthesized on the chemically etched Si nanostructures using a thin sputtered ZnO seed layer. The grown ZnO nanorod arrays (NRAs) exhibited good crystallinity and further reduced the surface reflection due to their antireflective property. The ZnO/Si double nanostructures showed the increased peak intensity of X-ray diffraction as well as the significantly reduced solar weight reflectance of 6.05% compared to 11.71% in the ZnO NRAs on the flat Si substrate. Also, the enhanced antireflection property of ZnO/Si double nanostructures was theoretically analyzed by performing the rigorous coupled wave analysis simulation.  相似文献   

15.
Novel ZnO core/shell nanostructures were constructed by depositing a porous ZnO layer directly on the surfaces of pre-fabricated ZnO nanowires through a facile chemical method. The morphology and structure of the obtained products have been investigated by field-emission scanning electron microscopy, high-resolution transmission electron microscopy and X-ray diffraction analysis. In these unique nanostructures, the porous overlayer exhibits a large surface area for sufficient dye loading to enhance light harvesting and the ZnO nanowire cores provide direct conduction pathways for the photogenerated electron transport to diminish the chance of electron recombination. The obtained ZnO nanostructures were used as photoanode material in dye-sensitized solar cell which showed an increase in performance of 141 % compared with an equivalent solar cell employing ZnO nanowire arrays as photoanode. This result was achieved mainly due to an increase in photogenerated current density directly resulting from improved light harvesting of the porous layer.  相似文献   

16.
Zinc oxide (ZnO) is a versatile material that has been used in photocatalysis, solar cells, chemical sensors, and piezoelectric transducers. All these are directly related to its surface properties. Here ZnO nanorod arrays were successfully synthesized by electrochemical deposition method, the surface of which was modified by dopamine, a robust anchor. Compared with pristine ZnO sample, the surface modification can greatly enhance the ultraviolet and visible-light photoluminescence. This is due to the formation of polydopamine on the nanorod surface, which may act as a dye that can be photoexcited. The resultant photogenerated electrons can inject into the conduction band of ZnO and take part in the luminescent process. These results may provide a foundation for real applications of ZnO nanomaterials in optoelectronic devices and, especially, for the applications in biological field as both the dopamine and ZnO are biocompatible materials.  相似文献   

17.
Zinc oxide (ZnO) is an emerging material in large area electronic applications such as thin-film solar cells and transistors. We report on the fabrication and characterization of ZnO microstructures and nanostructures. The ZnO microstructures and nanostructures have been synthesized using sol-gel immerse technique on oxidized silicon substrates. Different precursor's concentrations ranging from 0.0001 M to 0.01 M (M=molarity) using zinc nitrate hexahydrate [Zn(NO3)2. 6H2O] and hexamethylenetetramine [C6H12N4] were employed in the synthesis of the ZnO structures. The surface morphologies were examined using scanning electron microscope (SEM) and atomic force microscope (AFM). In order to investigate the structural properties, the ZnO microstructures and nanostructures were measured using X-ray diffractometer (XRD). The optical properties of the ZnO structures were measured using photoluminescence (PL) and ultraviolet-visible (UV-Vis) spectroscopies.  相似文献   

18.
ZnO is one of the most important semiconductors having a wide variety of applications in photonic, field emission and sensing devices. In addition, it exhibits a wide variety of morphologies in the nano regime that can be grown by tuning the growth habit of the ZnO crystal. Among various nanostructures, oriented 1-D nanoforms are particularly important for applications such as UV laser, sensors, UV LED, field emission displays, piezoelectric nanogenerator etc. We have developed a soft chemical approach to fabricate well-aligned arrays of various 1-D nanoforms like nanonails, nanowires and nanorods. The microstructural and photoluminescence properties of all the structures were investigated and tuned by varying the synthesis parameters. Field emission study from the aligned nanorod arrays exhibited high current density and a low turn-on field. These arrays also exhibited very strong UV emission and week defect emission. These structures can be utilized to fabricate efficient UV LEDs.  相似文献   

19.
By simply controlling atmosphere, rods, tetraleg-rods, and arrays of ZnO nanostructures have been fabricated respectively through pure zinc powder evaporation without catalyst at temperature of 650 - 700 degrees C. Investigations through HRTEM and XRD showed that the growth of the synthesized ZnO nanostructures was controlled by vapor-solid mechanism. Field emission measurements revealed that all of the structures, owing to their very low turn-on voltage, sufficient emission current and proper linearity of 1/V - Ln(l/V2), are likely to be potential candidates as a field emitter. The results also indicated that field emission properties are relative to morphology and size of the tips of ZnO nanostructures, and the nanorods with sharp tips possess the first-class FE property.  相似文献   

20.
As a promising candidate for future catalytic applications, the noble metal–ZnO nanocomposites are gaining increasing interest due its high catalytic property, and super stability. In this review, the noble metal–ZnO nanocomposites with various composites and structures for catalytic applications will be discussed. We introduce the multi-catalytic properties and design concept of the noble metal–ZnO nanocomposites, and then particular highlight key finding of synthesis method for various noble metal–ZnO nanocomposites. The catalytic activity of noble metal–ZnO nanostructures has been found to rely on not only the species of noble metal but also the architecture of the catalyst material. Moreover, the typical works of modification on noble metal–ZnO nanostructures have been introduced. Critically, the challenges for future research development and our future perspectives are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号