首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

In skin tissue engineering, a three-dimensional porous scaffold is necessary to support cell adhesion and proliferation and to guide cells moving into the repair area in the wound healing process. Structurally, the porous scaffold should have an open and interconnected porous architecture to facilitate homogenous cell distribution. Moreover, the scaffolds should be mechanically strong to protect deformation during the formation of new skin. In this study, the hybrid scaffolds were prepared by forming funnel-like collagen or gelatin sponge on a woven poly(l-lactic acid) (PLLA) mesh. The hybrid scaffolds combined the advantages of both collagen or gelatin (good cell-interactions) and PLLA mesh (high mechanical strength). The hybrid scaffolds were used to culture dermal fibroblasts for dermal tissue engineering. The funnel-like porous structure promoted homogeneous cell distribution and extracellular matrix production. The PLLA mesh reinforced the scaffold to avoid deformation. Subcutaneous implantation showed that the PLLA–collagen and PLLA–gelatin scaffolds promoted the regeneration of dermal tissue and epidermis and reduced contraction during the formation of new tissue. These results indicate that funnel-like hybrid scaffolds can be used for skin tissue regeneration.  相似文献   

2.
In skin tissue engineering, a three-dimensional porous scaffold is necessary to support cell adhesion and proliferation and to guide cells moving into the repair area in the wound healing process. Structurally, the porous scaffold should have an open and interconnected porous architecture to facilitate homogenous cell distribution. Moreover, the scaffolds should be mechanically strong to protect deformation during the formation of new skin. In this study, the hybrid scaffolds were prepared by forming funnel-like collagen or gelatin sponge on a woven poly(l-lactic acid) (PLLA) mesh. The hybrid scaffolds combined the advantages of both collagen or gelatin (good cell-interactions) and PLLA mesh (high mechanical strength). The hybrid scaffolds were used to culture dermal fibroblasts for dermal tissue engineering. The funnel-like porous structure promoted homogeneous cell distribution and extracellular matrix production. The PLLA mesh reinforced the scaffold to avoid deformation. Subcutaneous implantation showed that the PLLA–collagen and PLLA–gelatin scaffolds promoted the regeneration of dermal tissue and epidermis and reduced contraction during the formation of new tissue. These results indicate that funnel-like hybrid scaffolds can be used for skin tissue regeneration.  相似文献   

3.
This article reports an enhanced solvent casting/particulate (salt) leaching (SCPL) method developed for preparing three-dimensional porous polyurethane (PU) scaffolds for cardiac tissue engineering. The solvent for the preparation of the PU scaffolds was a mixture of dimethylformamide (DFM) and tetrahydrofuran (THF). The enhanced method involved the combination of a conventional SCPL method and a step of centrifugation, with the centrifugation being employed to improve the pore uniformity and the pore interconnectivity of scaffolds. Highly porous three-dimensional scaffolds with a well interconnected porous structure could be achieved at the polymer solution concentration of up to 20% by air or vacuum drying to remove the solvent. When the salt particle sizes of 212–295, 295–425, or 425–531 µm and a 15% w/v polymer solution concentration were used, the porosity of the scaffolds was between 83–92% and the compression moduli of the scaffolds were between 13 kPa and 28 kPa. Type I collagen acidic solution was introduced into the pores of a PU scaffold to coat the collagen onto the pore walls throughout the whole PU scaffold. The human aortic endothelial cells (HAECs) cultured in the collagen-coated PU scaffold for 2 weeks were observed by scanning electron microscopy (SEM). It was shown that the enhanced SCPL method and the collagen coating resulted in a spatially uniform distribution of cells throughout the collagen-coated PU scaffold.  相似文献   

4.
多级开孔壳聚糖海绵的细胞行为分析   总被引:1,自引:0,他引:1  
使用冰滴为致孔剂制备表面大孔、内部孔洞相连的新型壳聚糖(HPCS)支架,将其与聚乳酸复合制备出三维蜂窝状孔洞结构的复合支架(THCP).对HPCS和THCP进行了表面形貌、力学性能、细胞相容性等方面的表征,并与常规冻干法所制备的壳聚糖(CS)海绵进行了对比.结果表明,在HPCS海绵表面均匀分布着大而开放的孔洞,大孔内部...  相似文献   

5.
Gelatine sponge because of its flexibility, biocompatibility, and biodegradability, has the potential to be used as a scaffold to support osteoblasts and to promote bone regeneration in defective areas. This study aimed to determine osteoblast proliferation, differentiation, and integration in modified and un-modified gelatine sponges. Three scaffolds were studied: gelatine sponge (Gelfoam), gelatin sponge/mineral (hydroxyapatite) composite, and gelatin sponge/polymer (poly-lactide-co-glycolide) composite. 2-D plastic coverslip was used as control. The gelatin sponges were modified using PLGA coating and mineral deposition to increase biodegradation resistance and osteoblast proliferation respectively. The scaffolds were characterized using Scanning Electron Microscopy (SEM) and X-ray diffraction. Cell number (DNA content), cell-replication rate (thymidine assay), and cell differentiation (alkaline phosphatase activity) were measured 24 h, 3 days, and 1, 2, 3 weeks after the osteoblast-like cells were cultured onto the scaffolds. Cell penetration into the sponges was determined using haematoxylin-eosin staining. Both modified and unmodified gelatine sponges demonstrated ability to support cell growth and cells were able to penetrate into the sponge pores. In a comparison of different scaffolds, cell number and cell replication were highest in sponge/hydroxyapatite composite and lowest in sponge/PLGA composite.  相似文献   

6.
Biodegradable synthetic polymers such as poly(lactic acid) (PLA) are widely used to prepare scaffolds for cell transplantation and tissue growth, using different techniques set up for the purpose. However the poor hydrophilicity of these polymers represents the main limitation to their use as scaffolds because it causes a low affinity for the cells. An effective way to solve this problem could be represented by the addition of biopolymers that are in general highly hydrophilic. The present work concerns porous biodegradable sponge-like systems based on poly(l-lactic acid) (PLLA) and gelatine. Morphology and porosity characteristics of the sponges were studied by scanning electron microscopy and mercury intrusion porosimetry respectively. Blood compatibility was investigated by bovine plasma fibrinogen (BPF) adsorption test and platelet adhesion test (PAT). The cell culture method was used in order to evaluate the ability of the matrices to work as scaffolds for tissue regeneration. The obtained results indicate that the sponges have interesting porous characteristics, good blood compatibility and above all good ability to support cell adhesion and growth. In fact viable and metabolically active animal cells were found inside the sponges after 8 weeks in culture. On this basis the systems produced seem to be good candidates as scaffolds for tissue regeneration.  相似文献   

7.
Collagen has been coated successfully onto numerous hydrophilic polymer scaffolds to improve cell adhesion. Due to the hydrophobic nature of thermoplastic polyurethane (TPU), coating with aqueous collagen solution is problematic for such scaffolds. This study facilitated the coating of TPU with collagen and compared cross-linking and coating techniques. Three different cross-linking methods were compared. Both thermal and glutaraldehyde methods showed proof of cross-linking; however glutaraldehyde seemed to be superior to the other methods. The use of human urine as a wetting agent and the chemical glutaraldehyde had no effect on a cytotoxicity test performed by means of a WST-1 assay with a fibroblastic cell line. Three different coating techniques for porous TPU scaffolds were also investigated: ultrasound, pressurized air and injection. Of these, injection performed best. This method facilitated a coating of 100% of the porous scaffolds examined, which was verified by staining, FTIR and SEM.  相似文献   

8.
Pore architecture and its stable functionality under cell culturing of three dimensional (3D) scaffolds are of great importance for tissue engineering purposes. In this study, alginate was incorporated with collagen to fabricate collagen–alginate composite scaffolds with different collagen/alginate ratios by lyophilizing the respective composite gels formed via collagen fibrillogenesis in vitro and then chemically crosslinking. The effects of alginate amount and crosslinking treatment on pore architecture, swelling behavior, enzymatic degradation and tensile property of composite scaffolds were systematically investigated. The relevant results indicated that the present strategy was simple but efficient to fabricate highly interconnected strong biomimetic 3D scaffolds with nanofibrous surface. NIH3T3 cells were used as a model cell to evaluate the cytocompatibility, attachment to the nanofibrous surface and porous architectural stability in terms of cell proliferation and infiltration within the crosslinked scaffolds. Compared with the mechanically weakest crosslinked collagen sponges, the cell-cultured composite scaffolds presented a good porous architecture, thus permitting cell proliferation on the top surface as well as infiltration into the inner part of 3D composite scaffolds. These composite scaffolds with pore size ranging from 150 to 300 μm, over 90% porosity, tuned biodegradability and water-uptake capability are promising for tissue engineering applications.  相似文献   

9.
To investigate the methods to improve the cell–material interaction of devices or tissue engineering scaffolds made of poly(l-lactic acid) (PLLA) polymer, apatite and apatite/collagen composite coatings were formed on PLLA films within 24 h through accelerated biomimetic processes. In vitro investigation using Saos-2 osteoblast-like cells through cell culture was conducted to assess the biological performance of these biomimetic coatings. The cell morphology on three types of surfaces, viz., PLLA film, PLLA film with the apatite coating, and PLLA film with the apatite/collagen composite coating, was studied using scanning electron microscopy (SEM). Cell viability was estimated using the MTT assay. The differentiated cell function was assessed by measuring the alkaline phosphatase (ALP) activity. The results obtained indicated that the biomimetic apatite and apatite/collagen composite coatings could significantly enhance the proliferation and differentiation of osteoblast-like cells. The apatite/collagen composite coating appears to be promising for the surface modification of PLLA-based devices with much improved interactions with osteoblastic cells.  相似文献   

10.
肖素光  赵婧  翁杰 《功能材料》2007,38(3):432-434
采用有机泡沫浸渍法制备出高孔隙率的三维网状羟基磷灰石(HA)生物陶瓷支架,并采用不同浓度的聚乳酸(PDLLA)溶液涂覆网状HA支架,以达到增强补韧网化陶瓷支架的目的.通过扫描电镜观察PDLLA涂覆网状HA陶瓷支架的显微结构和测试力学强度,研究了不同浓度PDLLA溶液涂覆对网状HA支架的涂层厚度、显微结构和力学性能的影响.实验结果表明:涂覆一定量的PDLLA涂层可以显著提高网状HA生物陶瓷支架的抗压强度,同时保持网状陶瓷支架的贯通性和孔隙率.  相似文献   

11.
Collagen as an important extra-cellular matrix (ECM) in many tissues is weakly antigenic and the structure of collagen sponges is highly porous with interconnected pores effective for cell infiltration and mass transfer of oxygen and nutrients. Its application as a scaffold is limited by poor mechanical strength and rapid biodegradation. In this paper, we attempt to graft hydrolyzed PLGA fiber surfaces with collagen by N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide (EDC) in combination with N-hydroxysuccinimide (NHS), and then embed these collagen-grafted PLGA fibers in collagen sponge to form a hybrid PLGA-collagen scaffold. For further stability, we cross-linked the collagen in the scaffold and used it in rat liver cell cultivation. The scaffold was characterized by mechanical micro-tester, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Results showed that (1) the scaffolds exhibited isotropic and interconnected porous structure; (2) the compression modulus of this scaffold was enhanced 50 fold compared to the collagen scaffolds. The cell attachment and cytotoxicity of this scaffold were studied. Cell attachment was improved remarkably and the cytotoxicity of the hybrid PLGA-collagen scaffold was lower than that of the un-grafted PLGA-collagen scaffolds using alamarBlue™ assay normalized to the DNA content in each scaffold. This new hybrid scaffold has potential applications for tissue engineering.  相似文献   

12.
The biocompatibility and biomimetic properties of chitosan make it attractive for tissue engineering but its use is limited by its cell adhesion properties. Our objectives were to produce and characterize chitosan and reacetylated-chitosan fibrous scaffolds coated with type II collagen and to evaluate the effect of these chemical modifications on mesenchymal stem cell (MSC) adhesion. Chitosan and reacetylated-chitosan scaffolds obtained by a wet spinning method were coated with type II collagen. Scaffolds were characterized prior to seeding with MSCs. The constructs were analyzed for cell binding kinetics, numbers, distribution and viability. Cell attachment and distribution were improved on chitosan coated with type II collagen. MSCs adhered less to reacetylated-chitosan and collagen coating did not improve MSCs attachment on those scaffolds. These findings are promising and encourage the evaluation of the differentiation of MSCs in collagen-coated chitosan scaffolds. However, the decreased cell adhesion on reacetylated chitosan scaffold seems difficult to overcome and will limit its use for tissue engineering.  相似文献   

13.
Artificial skin substitutes based on autologous keratinocytes cultured on collagen substrata are being developed for treating patients with severe burns. The properties of the collagen substrate can be manipulated, for example, by crosslinking, to optimize desirable properties such as cell growth and penetration into the substrate, biological stability and mechanical strength. Collagen sponges crosslinked with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDAC) and the diamine, diaminohexane, were used to determine the effect of crosslinking on pore size and morphology, on the stability of the crosslinked sponges both in cell culture media and during incubation with collagenase, and on the penetration of keratinocytes and fibroblasts through the sponge matrix. Crosslinking of the sponges reduced the pore size, particularly at the surface, and altered sponge morphology. After crosslinking the collagen fibers were thinner, and appeared lacy and delicate. Crosslinking also influenced sponge stability. In keratinocyte serum-free medium the pore size of plain collagen sponges increased with increasing incubation time, and crosslinking appeared to prevent this, and may have stabilized sponge structure. Incubation in serum-containing Dulbeccos minimum essential medium caused a marked reduction in pore size in both plain collagen and crosslinked collagen sponges. Crosslinking did not appear to influence this cell-free contraction of collagen sponges. Treatment of sponges with EDAC markedly increased the resistance of sponges to collagenase digestion. The penetration of both keratinocytes and fibroblasts was retarded by crosslinking the sponges. Fibroblasts penetrated through the sponges to a greater extent than keratinocytes, and their proliferation rate was faster. The total number of cells populating the crosslinked sponges after 10 days culture was approximately 50% of that on untreated collagen sponges. The mechanism responsible for this effect was different with the two crosslinkers used. Diaminohexane appeared to inhibit cell growth, whereas EDAC may have caused a decrease in cell adhesion to the sponges, without an apparent inhibition of growth rate. In terms of morphology, fibroblasts were elongated to a greater extent on crosslinked sponges, and alligned themselves along the collagen fibers. Keratinocytes grew in colonies on untreated sponges, but on crosslinked sponges they grew in isolation, with minimal cell–cell interactions. It may be necessary to reach a compromise to obtain the best combination of properties for using collagen sponges as substrata for artificial skin substitutes. © 2001 Kluwer Academic Publishers  相似文献   

14.
The biomimetic apatite coating process was adopted to modify poly(L-lactide) (PLLA) surfaces with osteoblasts-like cell compatibility. The apatite coating was formed on the pre-hydrolyzed PLLA film and scaffold surfaces by incubating in simulated body fluid (SBF). Scanning electron microscopy and energy dispersive X-ray analyzer were utilized to characterize the composition and the structure of the apatite coating. The cytocompatibility of the modified PLLA films was investigated by testing osteoblast-like attachment, proliferation, alkaline phosphatase (ALP) activity, and cell cycle. Subsequently, the modified PLLA scaffolds were co-cultured with the osteoblasts-like in vitro and subcutaneously implanted into nude mice. The experimental results showed that the formed apatite had a nano-sized particle and matrix configuration. The surface modification of PLLA with apatite coating significantly promoted osteoblast-like compatibility. After a four-week culture in vivo, no significant inflammatory signs were observed in the implanted regions and osteoblast-like congeries with bone-like structure began to form in the scaffolds. The positive results of this study suggest a good way to produce desirable PLLA biomaterials for bone tissue engineering.  相似文献   

15.
The biomimetic apatite coating process was adopted to modify poly(L-lactide) (PLLA) surfaces with osteoblasts-like cell compatibility. The apatite coating was formed on the pre-hydrolyzed PLLA film and scaffold surfaces by incubating in simulated body fluid (SBF). Scanning electron microscopy and energy dispersive X-ray analyzer were utilized to characterize the composition and the structure of the apatite coating. The cytocompatibility of the modified PLLA films was investigated by testing osteoblast-like attachment, proliferation, alkaline phosphatase (ALP) activity, and cell cycle. Subsequently, the modified PLLA scaffolds were co-cultured with the osteoblasts-like in vitro and subcutaneously implanted into nude mice. The experimental results showed that the formed apatite had a nano-sized particle and matrix configuration. The surface modification of PLLA with apatite coating significantly promoted osteoblast-like compatibility. After a four-week culture in vivo, no significant inflammatory signs were observed in the implanted regions and osteoblast-like congeries with bone-like structure began to form in the scaffolds. The positive results of this study suggest a good way to produce desirable PLLA biomaterials for bone tissue engineering.  相似文献   

16.
One of the most widely used fabrication methods of three dimensional porous scaffolds involves compression moulding of a polymer salt mixture, followed by salt leaching. However, the scaffolds prepared by this technique have typically limited interconnectivity. In this study, besides salt particles, an additional polymeric porogen, poly(ethylene oxide), PEO, was added to poly(L-lactic acid), PLLA, to enhance the interconnectivity of the scaffolds. Compression moulded specimens were quenched and put into water, where PEO crystallized and phase separated. Following the leaching of PEO fraction, the permeability and interconnectivity among the macropores formed by salt leaching could be observed. The porosities obtained in the prepared scaffolds were between 76 to 86%. Moreover, the highest porosity of 86% was obtained with minimum fraction of total porogen. The water absorption of the porous scaffolds prepared with PEO could vary between 280 to 450% while water uptake of pure PLLA scaffolds was about 93%. The increase of interconnectivity induced by compounding PLLA with PEO could also be obtained in porous PLLA/starch blends and PLLA/hydroxyapatite composites demonstrating the versatility and wide applicability of this preparation protocol. The simplicity of this organic solvent free preparation procedure of three-dimensional porous scaffolds with high interconnectivity and high surface area to volume ratio holds a promise for several tissue engineering applications.  相似文献   

17.
Current approaches to fabrication of nSC composites for bone tissue engineering (BTE) have limited capacity to achieve uniform surface functionalization while replicating the complex architecture and bioactivity of native bone, compromising application of these nanocomposites for in situ bone regeneration. A robust biosilicification strategy is reported to impart a uniform and stable osteoinductive surface to porous collagen scaffolds. The resultant nSC composites possess a native‐bone‐like porous structure and a nanosilica coating. The osteoinductivity of the nSC scaffolds is strongly dependent on the surface roughness and silicon content in the silica coating. Notably, without the use of exogenous cells and growth factors (GFs), the nSC scaffolds induce successful repair of a critical‐sized calvarium defect in a rabbit model. It is revealed that topographic and chemical cues presented by nSC scaffolds could synergistically activate multiple signaling pathways related to mesenchymal stem cell recruitment and bone regeneration. Thus, this facile surface biosilicification approach could be valuable by enabling production of BTE scaffolds with large sizes, complex porous structures, and varied osteoinductivity. The nanosilica‐functionalized scaffolds can be implanted via a cell/GF‐free, one‐step surgery for in situ bone regeneration, thus demonstrating high potential for clinical translation in treatment of massive bone defects.  相似文献   

18.
Composite porous scaffolds of hydroxyapatite (HA)/poly-l-lactide (PLLA) were fabricated by a two-step immersing replication method. Structure and mechanical properties of both the single HA scaffold and the composite HA/PLLA scaffold were determined. The bioactivity of the scaffolds was evaluated by soaking in a simulated body fluid (SBF), and the formation of the apatite layer was determined by X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Energy-Dispersive Spectrometer (EDS). The results showed that without changing the highly interconnected porous structure, the HA/PLLA composite scaffold was mechanically enhanced to a great deal of extent compared with single HA scaffold. On the other hand, it is also suggested that the HA/PLLA scaffold was bioactive as it induced the formation of apatite on the surface of the composite scaffolds after soaking in SBF for 7 days.  相似文献   

19.
The preparation and characterization of PCL guides filled with a porous matrix of a freeze‐dried, genipin‐crosslinked gelatin sponge (GL/GP) is described. Porous guides are obtained by dip coating a rotating mandrel with a PCL/PEO blend solution followed by PEO solvent extraction. PCL/PEO 60/40 is selected as the optimal composition to obtain model porous membranes with suitable morphological properties to ensure nutrient permeation and moderate stiffness. GL/GP sponges show increased mechanical strength and water stability, compared to uncrosslinked GL sponges. GL/GP in the form of films, sponges and internal fillers support the in vitro adhesion and proliferation of Schwann like cells.  相似文献   

20.
Biomimetic apatite/collagen composite coating, previously reported particularly with regard to its fabrication, characterization and interaction with osteoblast-like cells, has been investigated in this study to understand the response of human mesenchymal stem cells (hMSC) to such surface. PLLA films and PLLA films with apatite coating were compared with PLLA films with apatite/collagen composite coating. The hMSC morphology in response to such conditions was first observed using fluorescence microscopy. To further understand such cell-material interactions at a molecular level, integrin expression, actin assembly and vinculin-positive focal adhesion plaques were examined. Our results demonstrated that spreading of stem cells on the apatite/collagen composite surface was determined best among the three types of surfaces, followed by the apatite surface and then the PLLA control. Integrin expression on the apatite/collagen surface was higher than those on the apatite surface and PLLA surface. Immunostaining for vinculin and actin suggested that the composite coating on PLLA enhanced the formation of focal adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号