共查询到20条相似文献,搜索用时 15 毫秒
1.
G. Bouche L. Allais V. Lezaud R. Piques A. Pineau 《Materials at High Temperatures》2013,30(3-4):403-408
The present work has been undertaken to study creep damage in welded joints. The complex dual phase microstructure of 316L welds are simulated by manually filling a mould with longitudinally deposited weld beads. Most of the moulded specimens were then aged for 2000 hours at 600°C. High resolution scanning electron microscopy was extensively used to examine the microstructure of the welded material before and after ageing. Columnar grains of austenite constitute a matrix in which thin dendrites of δ-ferrite can be found. The ageing generates the precipitation of carbides, resulting in less transformation in the material. Smooth and notched creep specimens were cut from the mould and tested at 600°C under different stress levels. The creep life of the simulated welded material is shown to be lower than that of the base material. Microstructural observations reveal that creep cavities are preferentially located along the austenite grain boundaries. This analysis of intergranular damage on test specimens is conducted to obtain a predictive damage law which could be used to calculate the lifetime of welded joints. 相似文献
2.
The creep crack growth behaviour of type 316stainless steel and its weldment in the temperature range 600° to BOOoe has been studied under plane stress conditions. The creep crack growth (eeG) rate bears a relation with sheloa;d point deflection (LPD) rate independent of the load. The parameters stress mtenstty factor, K,and the energy rate line integral C*,have been correlated with the e.eG rate. At 6000e tsecrack growth takes place along the interface between austemte and thsdelta fernte: At 700° and BOOoe sigma phase formation is dominant and crack growth tS along the Stgma phase and austenite. 相似文献
3.
L. Laiarinandrasana J.P. Polvora R. Piques B. Martelet 《Materials at High Temperatures》2013,30(3-4):181-186
For complex loading history (creep and fatigue) applied to engineering components, assessment procedures generally estimate the crack initiation and growth by using the summation of continuous fatigue and pure creep crack growth rates. This text deals with the pure creep correlation established in laboratory tests and applied to components subjected to creep-fatigue loading. The trend of the creep opening displacement history superimposed onto the crack progress is sufficient to predict what kind of tail effect will occur when plotting ? vs. C*. The exponent of this correlation is demonstrated to be very close to unity, whatever creep stage is concerned. The contribution of either the material behaviour or the crack extension to the ? -C* correlation is discussed. 相似文献
4.
R. F. MARTINS C. M. BRANCO 《Fatigue & Fracture of Engineering Materials & Structures》2004,27(9):861-871
Exhaust pipes of naval gas turbines are made of thin wall tubing of stainless steel grade AISI 316L. The tubes are fabricated by butt welding of different sections with longitudinal and circumferential joints. The plate thickness is about 4.0 mm, and the working temperature varies between 600 °C and 400 °C in the critical zones of the pipe, in the lower and central areas, respectively. The loadings in the tube induce high‐temperature fatigue and creep‐fatigue cracks have nucleated and propagated in the tube near some welded joints. The paper presents FCGR data obtained in CT specimens of used material taken from the pipes and tested at RT, 335, 500 and 600 °C. Preliminary creep data obtained in tension, in thin‐sheet specimens (about 4 mm thickness), also taken from the conduct wall and tested at 500, 550 and 600 °C are also given. These results are crucial to perform a fatigue‐creep interaction life assessment of the critical parts of the structure in the near future. Finally, the paper presents results of research work to investigate carbide precipitation and formation in virgin thin‐sheet specimens subjected to several types of thermal exposures. In some cases, 3–4 d was the time interval between exposures. Grain size measurements were carried out together with microstructural observations in the SEM. The influence of time, temperature and time interval between thermal exposures was assessed comparing the microstructures. 相似文献
5.
6.
The AISI 316L stainless steel has been widely used both in artificial knee and hip joints in bio-medical applications. In the present study AISI 316L SS was implanted with two different ions: nitrogen and helium at 100 keV with a dose of 1 × 1017 ions/cm2 at room temperature. The crystallographic orientation and surface morphology were studied using X-ray diffraction (XRD) and scanning electron microscope (SEM). The effects of ion implantation on the corrosion performance of AISI 316L stainless steel was evaluated in 0.9% NaCl solution using electro chemical test both on the virgin and implanted samples. The subsequent Tafel analysis shows that the ion implanted specimens were more corrosion resistant when compared to the bare specimens. Microhardness was also measured by Vickers method by varying the loads. The results of the studies indicated that there was a significant improvement in both corrosion resistance and hardness of implanted samples. 相似文献
7.
8.
针对Φ123 mm×3.97 mm×350 mm规格的大口径316L厚壁不锈钢管,基于显/隐式弹塑性有限元仿真结合实验研究,对其数控弯曲卸载后的回弹现象进行了研究.采用单向拉伸试验和三维数字散斑动态应变测量方法获得了大口径316L不锈钢管大应变范围(真应变为49.02%)的力学性能参数,通过摩擦磨损实验获得管材316L不锈钢与45钢模具材料在不同压力和转速条件下的摩擦系数.基于ABAQUS平台,建立了大口径316L不锈钢管弯曲、抽芯、卸载回弹全过程数控弯曲有限元模型,并实验验证了所建模型的可靠性.研究表明,大口径316L不锈钢管回弹现象显著,在350 mm弯曲半径(相对弯曲半径D/t为2.846)条件下达到7.2°左右.芯棒伸出量e、芯球个数n和弯曲角度θ对卸载回弹有显著影响. 相似文献
9.
10.
利用湿法相转化原理在316L不锈钢表面制备聚氨酯涂层时,空气湿度和溶液浓度是影响涂层形貌的两个主要因素.涂层表面形貌的观察结果表明:空气湿度增大或者溶液浓度减少,都有增大涂层表面孔径的趋势,而且可以加深孔的深度.通过控制空气湿度和溶液浓度,孔径可以在几个微米到30多个微米的范围内变化.通过亲疏水性测量、血小板粘附试验和动态凝血试验考察了涂层的血液相容性.以316L不锈钢作为参照组进行对比分析,结果可知:PU多孔涂层表面为超疏水性,明显降低了血小板在材料表面的粘附,延长了动态凝血时间,表现出良好的血液相容性. 相似文献
11.
Tests carried out at room temperature on 316 L stainless steels with different nitrogen contents show that nitrogen improves the low cycle fatigue resistance of the materials. However, saturation occurs when nitrogen content is above 0.12 weight per cent. The microstructural aspect is also studied; the deformation is more difficult and more planar when nitrogen is present. Moreover, nitrogen delays the formation of cells. A single relation, derived from the Manson-Coffin formula, describes the low cycle fatigue behaviour of these steels by taking into account plastic strain range and nitrogen content. 相似文献
12.
The rapid technical development enhances the demands on constructional materials in terms of their resistance to frictional wear, resistance to corrosion and erosion, high hardness, high tensile and fatigue strength. These demands can be satisfied by e.g. applying various surface engineering techniques that permit to modify the microstructure, phase and chemical composition of the surface layers of the treated parts. A prospective line of the development of surface engineering is the production of composite layers by combining various surface engineering methods. The paper presents the results of examinations of the phase composition and frictional wear resistance of the layers produced by hybrid processes, i.e. such that combined glow discharge assisted nitriding performed at 450 °C and 550 °C with a pulsed laser deposition of boron nitride coatings (PLD method). It has been shown that the boron nitride coatings formed on nitrided AISI 316L steel increase its frictional wear resistance. 相似文献
13.
表面纳米化对316L不锈钢性能的影响 总被引:7,自引:0,他引:7
对316L不锈钢进行表面机械研磨处理(SMAT),研究表面组织变化对其硬度和在0.5 mol/LNaCl介质中腐蚀性能的影响.结果表明:通过SMAT可以在316L不锈钢表面制备出纳米结构层,随着处理时间的增加,表面纳米晶组织逐渐由单一的奥氏体相过渡到奥氏体与马氏体两相共存;表面纳米化和马氏体相变能够明显地提高316L不锈钢的表层硬度,使表面粗糙度略有下降;表面机械研磨处理降低了316L不锈钢在0.5mol/L NaCl腐蚀介质中的耐蚀性能.因为316L不锈钢表面纳米晶组织容易钝化,形成的钝化膜不稳定,提高了溶解速度. 相似文献
14.
Qingzhong Mao Bo Gao Jiansheng Li Zhaowen Huang 《Materials Science & Technology》2013,29(12):1497-1503
Excellent strength–ductility synergy of metallic materials is significant for their industrial applications. This study presents a fine-grained 316L stainless sheet (average grain size of ~5?µm) with a good combination of strength and ductility achieved via low-strain cold rolling (rolling strain of 30%). The fabricated steel sheet exhibits maximum yield strength and ultimate tensile strength values of 1045 and 1080?MPa, respectively, with a uniform elongation of 7%. Experimental results confirm that the high density of dislocations, strain-induced martensitic phase, and deformation twins together contribute to the high strength of the rolled stainless steel. Moreover, its good ductility is attributable to the strain-induced martensitic transformation and deformation twins. 相似文献
15.
A preliminary study of laser cladding of AISI 316 stainless steel using preplaced NiTi wire 总被引:3,自引:0,他引:3
NiTi wire of diameter 1 mm was preplaced on AISI 316 stainless steel samples by using a binder. Melting of the NiTi wire to form a clad track on the steel substrate was achieved by means of a high-power CW Nd:YAG laser using different processing parameters. The geometry and microstructure of the clad deposit were studied by optical microscopy and scanning electron microscopy (SEM), respectively. The hardness and compositional profiles along the depth of the deposit were acquired by microhardness testing and energy-dispersive spectroscopy (EDS), respectively. The elastic behavior of the deposit was analyzed using nanoindentation, and compared with that of the NiTi wire. The dilution of the NiTi clad by the substrate material beneath was substantial in single clad tracks, but could be successively reduced in multiple clad layers. A strong fusion bonding with tough interface could be obtained as evidenced by the integrity of Vickers indentations in the interfacial region. In comparison with the NiTi cladding on AISI 316 using the tungsten inert gas (TIG) process, the laser process was capable of producing a much less defective cladding with a more homogeneous microstructure, which is an essential cladding quality with respect to cavitation erosion and corrosion resistance. Thus, the present preliminary study shows that laser cladding using preplaced wire is a feasible method to obtain a thick and homogeneous NiTi-based alloy layer on AISI 316 stainless steel substrate. 相似文献
16.
17.
Microbiologically Influenced Corrosion (MIC) is a specific type of corrosion caused or promoted by microorganisms usually chemoautotrophs. In recent years, there has been growing interest in the exploitation of electrochemical noise technique to investigate and monitor biocorrosion. The advantages of Electrochemical Noise (EN) technique includes the possibility to detect and study the early stages of localized corrosion; however the comprehension of EN signals still remains very limited. In the present work an attempt has been made to analyze the current and potential noise records for type 316 L stainless steel (SS) specimen immersed in Iron oxidizing bacteria inoculated medium amended with different concentrations of NaCl. All the potential and current noise data collected in the time domain were transformed in the frequency domain, using MATLAB software. Shot noise parameters like frequency of corrosion events (fn), average charge in each event (q), true coefficient of variation and noise resistance (RN) were analyzed. Low frequency events and high charge were observed for the specimen after the exposure of 3 weeks in microbial medium with 1% NaCl when compared to control. It indicates that microbes can influence the pitting corrosion over the specimen which was also evidenced by Scanning Electron Microscope (SEM). In addition to this, the probabilistic failure model for MIC on 316 L SS was predicted using Weibull distribution. 相似文献
18.
For power generating equipment subjected to cyclic loading at high temperature, crack growth could arise from the combinations of fatigue and creep processes. There is potential for the material to undergo hardening (or more generally changes of material state) as a consequence of cyclic loading. Results of an experimental study to examine the influence of prior cyclic hardening on subsequent creep deformation are presented for type 316L(N) stainless steel at 600°C. Experiments were also carried out to explore creep crack growth at constant load, and crack growth for intermittent cyclic loading. For the as-received material there is substantial primary creep (hardening) at constant load, while for the cyclically hardened material at constant load the creep curves show recovery, and increasing creep rate with increasing time. Specimens subjected to prior cyclic hardening were also used for a series of creep and creep-fatigue crack growth tests. These tests demonstrated that there was accelerated crack growth compared to crack growth in as-received material. 相似文献
19.
20.
In this paper, we aim to optimize welding parameters namely welding current and time in resistance spot welding (RSW) of the austenitic stainless steel sheets grade AISI 316L. Afterward, effect of optimum welding parameters on the resistance spot welding properties and microstructure of AISI 316L austenitic stainless steel sheets has been investigated. Effect of welding current at constant welding time was considered on the weld properties such as weld nugget size, tensile–shear load bearing capacity of welded materials, failure modes, failure energy, ductility, and microstructure of weld nuggets as well. Phase transformations that took place during weld thermal cycle were analyzed in more details including metallographic studies of welding of the austenitic stainless steels. Metallographic images, mechanical properties, electron microscopy photographs and micro-hardness measurements showed that the region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. Backscattered electron scanning microscopic images (BE-SEM) showed various types of delta ferrite in weld nuggets. Three delta ferrite morphologies consist of skeletal, acicular and lathy delta ferrite morphologies formed in resistance spot welded regions as a result of non-equilibrium phases which can be attributed to the fast cooling rate in RSW process and consequently, prediction and explanation of the obtained morphologies based on Schaeffler, WRC-1992 and Pseudo-binary phase diagrams would be a difficult task. 相似文献