首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Particulate reinforced magnesium matrix nanocomposites were fabricated by semisolid stirring assisted ultrasonic vibration. Compared with the as-cast AZ91 alloy, the grain size of matrix alloy in the SiCp/AZ91 nanocomposite stirring for 5 min was significantly decreased due to the addition of SiC nanoparticles. SiC nanoparticles within the grains exhibited homogeneous distribution although some SiC clusters still existed along the grain boundaries in the SiCp/AZ91 nanocomposite stirring for 5 min. With increasing the stirring time, agglomerates of SiC nanoparticles located along the grain boundaries increased. The ultimate tensile strength, yield strength and elongation to fracture of the SiCp/AZ91 nanocomposite stirring for 5 min were simultaneously improved compared with the as-cast AZ91 alloy. However, the ultimate tensile strength and elongation to fracture of the SiCp/AZ91 nanocomposite decreased with increasing the stirring time.  相似文献   

2.
采用搅拌铸造法制备SiC体积分数为5%、10%和15%的颗粒增强AZ91镁基复合材料(SiCp/AZ91)。复合材料经过T4处理后,于350°C以固定挤压比12:1进行热挤压。在铸态复合材料中,颗粒在晶间微观区域发生偏聚。热挤压基本上消除了这种偏聚并有效地改善颗粒分布。另外,热挤压有效地细化基体的晶粒。结果表明:热挤压明显提高复合材料的力学性能。在挤压态复合材料中,随着SiC颗粒含量的升高,基体的晶粒尺寸减小,强度和弹性模量升高,但是伸长率降低。  相似文献   

3.
Spark plasma sintering (SPS) technology was used to determine the appropriate conditions for SPS sintering of commercially pure magnesium as well as the magnesium alloy AZ31. It was found that the sintering temperatures of 585 °C and 552 °C were the most suitable sintering temperatures for the magnesium and the AZ31 alloy, respectively. Magnesium matrix and AZ31 alloy matrix composites reinforced with SiC particles were then successfully fabricated by the SPS method at sintering temperatures of 585 °C and 552 °C, respectively. A uniform distribution of SiC particles was observed along the boundary between matrix particles. The mechanical properties, i.e. hardness and tensile strength increased with increasing SiC content up to 10 wt%. However, when the SiC content was larger than 10 wt%, the tensile strength decreased due to the agglomeration of SiC particles. The agglomeration of SiC particles was found to lead to the degradation of the interfacial bonding strength between matrix and reinforcement.  相似文献   

4.
针对风力发电机组摩擦材料对性能的要求,在不同的温度下,成功制备出了SiC颗粒增强的AZ91镁合金基复合材料,并且对其拉伸性能进行研究.结果表明,SiCp/AZ91复合材料的抗拉强度高于AZ91基体镁合金;在同样的烧结温度下,直径较小的SiC颗粒对复合材料的抗拉强度提高幅度较大.  相似文献   

5.
AZ31/AZ91 hybrid alloy nanocomposite containing Al2O3 nanoparticle reinforcement was fabricated using solidification processing followed by hot extrusion. The nanocomposite exhibited similar grain size to the monolithic hybrid alloy, reasonable Al2O3 nanoparticle distribution, non-dominant (0 0 0 2) texture in the longitudinal direction, and 25% higher hardness than the monolithic hybrid alloy. Compared to the monolithic hybrid alloy (in tension), the nanocomposite synergistically exhibited higher 0.2%TYS, UTS, failure strain and work of fracture (WOF) (+12%, +7%, +99% and +108%, respectively). Compared to the monolithic hybrid alloy (in compression), the nanocomposite exhibited higher 0.2%CYS and UCS, and lower failure strain and WOF (+5%, +3%, −7% and −7%, respectively). The beneficial effects of Al2O3 nanoparticle addition on the enhancement of tensile and compressive properties of AZ31/AZ91 hybrid alloy are investigated in this paper.  相似文献   

6.
利用搅拌铸造?热挤压工艺制备SiCp/2024复合材料板材。通过金相观察(OM)、扫描电镜(SEM)及力学性能测试等手段研究了该复合材料热挤压变形前后的显微组织与力学性能。结果表明,复合材料铸坯主要由大小为80μm~100μm的等轴晶组成,晶界第二相粗大呈非连续状分布,SiC颗粒较均匀地分布于基体合金,大部分SiC颗粒沿晶界分布,少数颗粒分布于晶内;热挤压变形后,显微孔洞等铸造缺陷和SiC颗粒团聚现象明显消除,SiC颗粒及破碎的第二相沿热挤压方向呈流线分布,复合材料的强度和塑性显著提高;拉伸断口表明,热挤压变形有利于改善SiC颗粒与基体合金的界面结合;SiCp/2024复合材料主要的断裂方式为SiC颗粒断裂和SiC/Al的界面脱粘。  相似文献   

7.
通过半固态搅拌铸造和热挤压变形复合工艺制备出了质量分数为1%的纳米SiCp/Mg-9Al-1Zn镁基复合材料。研究了搅拌时间分别为10min和30min时对纳米SiCp/Mg-9Al-1Zn镁基复合材料的显微组织和力学性能的影响。结果表明,对于铸态的纳米SiCp/Mg-9Al-1Zn镁基复合材料来说,搅拌时间为30min时,基体的晶粒细化,但在晶界处析出的Mg17Al12相数量增多,网状化严重且SiC团聚增加,使得复合材料的力学性能下降。而通过热挤压后,复合材料形成了粗晶与细晶交替的组织结构。特别是对于搅拌时间为30min的复合材料,细晶区增多且纳米SiC颗粒分布更加均匀, 这就使得力学性能高于搅拌10min的挤压态的SiCp/Mg-9Al-1Zn复合材料。  相似文献   

8.
文章采用自行设计的高能超声装置制备SiCp/AZ31镁基纳米复合材料,并对制备的复合材料进行显微组织观察和力学性能测试。实验结果表明,高能超声波能使纳米SiCp在镁合金熔体中均匀分散,复合材料抗拉强度和屈服强度都比基体有较大提高,并能保持较高的延伸率。另外,对高能超声波制备金属基复合材料的分散机理,以及SiCp增强镁基纳米复合材料的增强机制,进行了初步探讨。  相似文献   

9.
挤压比为4:1,将铸态AZ91镁合金分别在250,300和350℃下进行挤压,随后进行析出硬化处理(T6)。经过热挤压和析出硬化处理后,铸态AZ91镁合金中粗大的和偏析Mg17Al12析出相被细化并均匀分布在α-镁基体中。在不同的挤压温度下合金中发生了部分或全部动态再结晶。经挤压后,该合金的极限抗拉强度从铸态的190MPa增加到570MPa。AZ91镁合金的时效硬化特征与晶粒尺寸有关。在250、300和350℃下以4:1的挤压比挤压该合金后,获得峰值硬度的时效时间分别为35、30和20h。SEM观察到在AZ91基体中存在均匀细小的Mg17Al12析出相。  相似文献   

10.
The AZ91D Mg matrix composites reinforced by SiC particulate with the sizes of 11 μm, 21 μm and 47 μm were successfully fabricated respectively by vacuum-assisted pressure infiltration technology. Microstructures and particulate distributions were analyzed with scanning electron microscope (SEM), X-ray diffraction (XRD) and transmission electron microscope (TEM). The coefficient of thermal expansion (CTE) measurements was performed from 75 °C to 400 °C at a heating rate of 5 °C/min. The results show that the uniform distribution of SiC particulate in metal matrix and density over 98% in theoretical density of composites were fabricated. Only MgO phase was detected at the interface and no brittle phases of Al4C3 and Mg2Si were discovered. The desirable coefficients of thermal expansion of composites were achieved. The intensity of dislocation generation nearby SiC particulate increases significantly with the increasing of SiC particulate size. Therefore, this technology is a potential method to fabricate Mg matrix composites reinforced by SiC particulates with the desirable microstructures and CTE.  相似文献   

11.
This study focuses on the friction and wear behaviors of reciprocatingly extruded Al–SiC composites. To increase the strength of metal matrix composites and refine the grains of the matrix some deformation processes can be applied, such as reciprocating extrusion (RE). For this reason, RE was carried out on a 6061 Al matrix by a SiC (20 μm) reinforced composite one. The billets were extruded under a pressure of 17.5 MPa at 573 K with a 10:1 extrusion ratio. The reciprocating extrusions were carried out by using up to 15 passes.  相似文献   

12.
The influence of silicon carbide (SiCp) proportion and matrix composition on four aluminium metal matrix composites (A360/SiC/10p, A360/SiC/20p, A380/SiC/10p, A380/SiC/20p) immersed in 1-3.5 wt% NaCl at 22 °C was investigated by potentiodynamic polarization. The kinetics of the corrosion process was studied on the basis of gravimetric measurements. The nature of corrosion products was analysed by scanning electron microscopy (SEM) and low angle X-ray diffraction (XRD). The corrosion damage in Al/SiCp composites was caused by pitting attack and by nucleation and growth of Al2O3 · 3H2O on the material surface. The main attack nucleation sites were the interface region between the matrix and the reinforcement particles. The corrosion process was influenced more by the concentration of alloy elements in the matrix than by the proportion of SiCp reinforcement and saline concentration.  相似文献   

13.
Al 6061- and Al 7108-SiCp composites (Al-PMMC) were prepared by stir-casting with SiCp size of 8 and 15 μm and volume fraction (Vf) of 0–20%. These composites were then subjected to successive hot rolling at 450 °C using a strain rate of 1 s−1 while the intermediate period of heating between each two successive rolling steps was 1 min to 1 h. Tensile test was conducted on the as-rolled composite strips with 3.0, 1.1 and 0.4 mm thicknesses using 81, 94 and 98% reductions, subsequently, with a tensile rate of 10 MPa s−1. Different tensile properties including ultimate tensile strength UTS, Young's modulus and elongation, were determined. The tensile behaviour was analysed in view of matrix alloy type and SiCp size and Vf. The effect of T6 treatment on the microstructure and tensile properties was also presented. Generally, successive hot rolling resulted in decreasing casting defects such as void and SiCp agglomeration present in the as-cast composites and hence enhanced mechanical properties were achieved. Almost 240 and 390% improvement in ultimate tensile strength (UTS) for 6061 and 7108 composite was obtained, respectively. The improvement in strength was remarkable for composites rolled to 0.4 mm. Annealing improved the elongation% at break of the 10–15% Vf composite more than 3 times. UTS of rolled composite was enhanced by T6 treatment at 176 °C and 120 °C for 6061 and 7108 composites. The effect of T6 treatment on the composite tensile behaviour was discussed.  相似文献   

14.
Microstructures and mechanical properties of the Mg-4Y-2Gd-0.4Zr alloy with Zn additions have been investigated. The investigation suggests that the mechanical properties of the alloys have been greatly improved after hot extrusion due to the refinement of microstructures, especially the elongations. The extruded Mg-4Y-2Gd-1.0Zn-0.4Zr alloy displays excellent tensile properties. The ultimate tensile strength and the yield tensile strength are 291 and 228 MPa, respectively, with an elongation of 28%. The additions of Zn have an obvious effect on refining microstructure of the extruded alloys, and the vicker hardness increases with increasing Zn additions. The age hardening responses of the extruded alloys have been investigated at 220 °C. These alloys display unobvious ageing hardness responses.  相似文献   

15.
Magnesium matrix nanocomposite reinforced with carbon nanotubes (CNTs/AZ91D) was fabricated by mechanical stirring and high intensity ultrasonic dispersion processing. The microstructures and mechanical properties of the nanocomposite were investigated. The results show that CNTs are well dispersed in the matrix and combined with the matrix very well. As compared with AZ91D magnesium alloy matrix, the tensile strength, yield strength and elongation of the 1.5%CNTs/AZ91D nanocomposite are improved by 22%, 21% and 42% respectively in permanent mold casting. The strength and ductility of the nanocomposite are improved simultaneously. The tensile fracture analysis shows that the damage mechanism of nanocomposite is still brittle fracture. But the CNTs can prevent the local crack propagation to some extent.  相似文献   

16.
The effect of extrusion ratio on microstruetures and mechanical properties of magnesium alloy AZ91D extruded tube at 430℃ has been studied. After the evolution of microstracture and mechanical properties of AZ91D during extrusion were studied, the following parameters were obtained: tensile strength reached the climax value of 306.9MPa and elongation peak value of 10.1% at an extrusion ratio of 7.125, and with the increase of the extrusion ratio to 7.45, yield strength reached a top value of 285.795MPa with decreased tensile strength and elongation. It was concluded that mechanical properties of magnesium alloys AZ91D could be enhanced by adjusting the extrusion ratio near recrystallization.  相似文献   

17.
The corrosion behaviour of silicon-carbide-particle (SiCp) reinforced AZ92 magnesium alloy manufactured by a powder metallurgy process was evaluated in 3.5 wt.% NaCl solution, neutral salt fog (ASTM B 117) and high relative humidity (98% RH, 50 °C) environments. The findings revealed severe corrosion of AZ92/SiC/0-10p materials in salt fog environment with formation of corrosion products consisting of Mg(OH)2 and (Mg,Al)x(OH)y. The addition of SiCp increased the corrosion rate and promoted cracking and spalling of the corrosion layer for increasing exposure times. Composite materials revealed higher corrosion resistance in high humidity atmosphere with almost no influence of SiCp on the corrosion behaviour.  相似文献   

18.
挤压高强度AZ91D镁合金管材的研究   总被引:1,自引:0,他引:1  
针对挤压变形得到的高强度AZ91D合金管材进行了组织分析,探讨了其强化机制。实验得出,在温度为430℃、应变速率为0.033s-1、挤压比为12时AZ91D镁合金挤压管材(T6)的抗拉强度可达417.2MPa,远远高于压铸镁合金及AZ31等常用变形镁合金;除细晶强化外,第二相强化、亚晶界析出强化和堆垛结构强化为其主要强化机制。  相似文献   

19.
Rolling of wrought aluminium matrix composites with hard phase-reinforcements such as SiC, is interesting to produce sheets for engineering constructions due to their light weight combined with good strength and wear resistance. In this work, the hot rolling behaviour is studied for stir-cast composites with matrix of Al 6061 and Al 6082 alloys and fine SiCp particulates with size of 15 μm and 8 μm and volume fraction up to 30%. For composite casting, optimum casting procedures and materials pre-treatment has been applied for successful insertion of particles into the melt, better particles/matrix wetting and particles distribution, minimized SiC/Al reaction. From thermomechanical simulation, step rolling is defined to be suitable at a strain rate of 1 s−1 rate for each step, using intermediate heat treatment at 450 °C for a period of 10 s to 1 h. Generally, the quality of rolled product was improved with improving casting quality. Successive hot rolling resulted in decreasing void and the agglomeration clusters and hence enhanced mechanical properties are achieved. The flow behaviour under rolling of Al-particulate metal matrix composites, PMMCs, is analysed and the product is characterised for its mechanical properties.  相似文献   

20.
采用反复塑性变形(RPW)技术,结合挤压工艺制备出SiC颗粒增强AZ31镁基复合材料,研究了循环次数(RPW次数)对SiC_p/AZ31镁基复合材料显微组织和性能的影响.结果表明,反复塑性变形具有明显的AZ31基体晶粒细化、SiC_p细化和分散作用,能显著提高SiC_p/AZ31复合材料的抗拉强度和硬度,并改善其塑性.在SiC_p的体积分数为4%时,经RPW为300次的热挤压后,AZ31基体晶粒粒径达到最小值20 μm,SiC_p被粉碎成3 μm以下的微粒,且弥散分布于合金基体中,复合材料的室温抗拉强度和硬度(HV)达到或接近最大值,分别为359 MPa和107.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号