首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work differential transformation method (DTM) is used to predict the buckling behaviour of single walled carbon nanotube (SWCNT) on Winkler foundation under various boundary conditions. Four different boundary conditions namely clamped–clamped, simply supported, clamped hinged and clamped free are used to study the critical buckling loads. Effects of (i) size of SWCNT (ii) nonlocal parameter and (iii) Winkler elastic modulus on nonlocal critical buckling loads are being investigated and discussed. The DTM is implemented for the nonlocal SWCNT analyses and this yields results with high degree of accuracy. Further, present method can be applied to linear and nonlinear problems.  相似文献   

2.
A single-elastic beam model has been developed to analyze the thermal vibration of single-walled carbon nanotubes (SWCNT) based on thermal elasticity mechanics, and nonlocal elasticity theory. The nonlocal elasticity takes into account the effect of small size into the formulation. Further, the SWCNT is assumed to be embedded in an elastic medium. A Winkler-type elastic foundation is employed to model the interaction of the SWCNT and the surrounding elastic medium. Differential quadrature method is being utilized and numerical solutions for thermal-vibration response of SWCNT is obtained. Influence of nonlocal small scale effects, temperature change, Winkler constant and vibration modes of the CNT on the frequency are investigated. The present study shows that for low temperature changes, the difference between local frequency and nonlocal frequency is comparatively high. With embedded CNT, for soft elastic medium and larger scale coefficients (e0a) the nonlocal frequencies are comparatively lower. The nonlocal model-frequencies are always found smaller than the local model-frequencies at all temperature changes considered.  相似文献   

3.
This paper investigates the large-amplitude free vibration of a double-walled carbon nanotube (DWCNT) surrounded by an elastic medium in the presence of temperature change. Based on continuum mechanics, a nonlocal elastic beam model is employed in which nanotubes are coupled together via the van der Waals (vdW) interlayer interactions. The Pasternak foundation model and a nonlinear vdW model are utilized to describe the surrounding elastic medium effect and the vdW interlayer interactions, respectively. DWCNTs with different boundary conditions are analyzed utilizing the Timoshenko beam theory that considers the shear deformation and rotary inertia effects. The governing equations are derived from Hamilton’s principle; the Galerkin method is utilized to discretize the governing equations. The influences of the nonlocal parameter, spring constant, carbon nanotube aspect ratio, and temperature change on the nonlinear free vibration characteristics of a double-walled carbon nanotube with different boundary conditions are thoroughly investigated. It is deduced that the nonlocal parameter, spring constant, and the aspect ratio play significant roles for the value of the nonlinear frequency. Also, the temperature change and the type of boundary conditions have an effect on the nonlinear frequency.  相似文献   

4.
The free vibration analysis of a single-walled carbon nanotube (SWCNT) is a requisite analysis for the optimal design of nanolevel devices and systems. However, the natural frequencies of structures from free vibration analysis depend, among other things, on their geometry, boundary conditions, material property and the nature of the surrounding medium. Thus in this paper, a mathematical model is presented for the vibration analysis of a geometrically tapered SWCNT. The SWCNT is idealized as a nonlocal Rayleigh (NLR) beam that is axially loaded and embedded in a deformable surrounding medium. A polynomial power law that defines the range of tapers along the longitudinal axis of the continuum is proposed. The variable coefficient governing differential equation of the tapered SWCNT is solved with the Bubnov–Galerkin method. Numerical values, graphical plots and the Pareto charts of the influence of the parameters in the model on the natural frequency of the NLR beam are presented. The presence of the taper ratio alters the natural frequencies of the SWCNT for the values of the radius of gyration considered. The analysis further shows that the influence of the nonlocal parameter with the Pasternak shear modulus is more profound than with the Winkler modulus at the nanoscale level.  相似文献   

5.
ABSTRACT

In this paper, the size-dependent vibration and instability of nanoflow-conveying nanotubes with surface effects using nonlocal strain gradient theory (NSGT) are examined. Hence, based on Gurtin-Murdoch theory, the nonclassical governing equations are derived by extended Hamilton's principle. To study the small-size effects on the flow field, the Knudsen number is applied. Applying Galerkin's approach, the partial differential equations converted to ordinary differential equations. The effects of the main parameters like nonlocal and strain gradient parameters, length to diameter ratio, thickness, surface effects, Knudsen number and different boundary conditions on the eigenvalue and critical fluid velocity of the nanotube are explained.  相似文献   

6.
This article presents a nonlocal sinusoidal shear deformation beam theory (SDBT) for the nonlinear vibration of single-walled boron nitride nanotubes (SWBNNTs). The surrounding elastic medium is simulated based on nonlinear Pasternak foundation. Based on the nonlocal differential constitutive relations of Eringen, the equations of motion of the SWBNNTs are derived using Hamilton's principle. Differential quadrature method (DQM) for the nonlinear frequency is presented, and the obtained results are compared with those predicted by the nonlocal Timoshenko beam theory (TBT). The effects of nonlocal parameter, vibrational modes, length, and elastic medium on the nonlinear frequency of SWBNNTs are considered.  相似文献   

7.
Many experimental observations have shown that most nanostructures, such as carbon nanotubes, are often characterized by a certain degree of waviness along their axial direction. This geometrical imperfection has profound effects on the mechanical behavior of carbon nanotubes. In the present work, stability of a slightly curved carbon nanotube under lateral loading is investigated based on Eringen's nonlocal elasticity theory. Euler Bernoulli and Timoshenko beam theories are employed to obtain equilibrium equations. Winkler-Pasternak elastic foundation is used to approximate the effect of matrix. Effects of initial curvature, nonlocal parameter, beam length, and elastic foundation parameters on initiation of critical conditions are investigated.  相似文献   

8.
Postbuckling, nonlinear bending and nonlinear vibration analyses are presented for single-wall carbon nanotubes (SWCNTs) resting on a two-parameter elastic foundation in thermal environments. The SWCNT is modeled as a nonlocal nanobeam which contains small scale effects. The elastomeric substrate with finite depth is modeled as a two-parameter elastic foundation. The thermal effects are included and the material properties of both SWCNTs and the substrate are assumed to be temperature-dependent. The governing equation that includes beam–foundation interaction is solved by a two-step perturbation technique. The numerical results reveal that the small scale parameter e0a reduces the postbuckling equilibrium paths, the static large deflections and natural frequencies of SWCNTs resting on an elastic foundation. The results also reveal that the effect of the small scale parameter is significant for compressive buckling, but less pronounced for static bending and marginal for free vibration of SWCNTs resting on an elastic foundation.  相似文献   

9.
Based on nonlocal theory of thermal elasticity mechanics, a nonlocal elastic Timoshenko beam model is developed for free vibration analysis of zigzag single-walled carbon nanotube (SWCNT) considering thermal effect. The nonlocal constitutive equations of Eringen are used in the formulations. The equivalent Young’s modulus and shear modulus for zigzag SWCNT are derived using an energy-equivalent model. Results indicate significant dependence of natural frequencies on the temperature change as well as the chirality of zigzag carbon nanotube. These findings are important in mechanical design considerations of devices that use carbon nanotubes.  相似文献   

10.
In the present study, the surface effect on the forced vibration of a double, single-walled carbon nanotube system (DSWNTS) under excitation of a moving nanoparticle is analyzed based on the modified nonlocal elasticity theory. The nanotube surroundings are modeled by an elastic medium and it is assumed that two nanotubes are connected to each other continuously, using elastic springs. In a parametric study, influences of the nonlocal parameter, velocity of the moving nanoparticle, the elastic layer between the nanotubes, and the order of derivative on dynamic responses of the DSWNTS are investigated in detail. The results demonstrate that the variation of order of derivative affects dynamic deflection and frequency of DSWNTS considerably. In this study, the influences of additional terms in nonlocal theory and improving the accuracy of results by presenting a modified version of nonlocal elasticity theory is investigated. As the results have presented, there is a noticeable difference in comparison with a previous case and this issue certifies the importance of the presented work. Also, a general and exact validation has been performed on the results, differences percentages have been observed, and effective factors on these differences have been reported.  相似文献   

11.
This article presents closed-form solution for the buckling, postbuckling, and nonlinear deflection of laminated composite plate with two piezoelectric actuators on elastic foundation and under transverse pressure, in-plane compression, thermal, and electrical loads for the first time in the literature. Material properties are assumed to be temperature-dependent. Two cases of boundary conditions and initial imperfection of the plate are considered. The formulations are based on the classical laminated plate theory (CLPT). The Galerkin method is employed to obtain load–deflection relations. The effects of elastic foundation, lateral pressure, in-plane compression, temperature dependency of material properties, electrical and thermal loading, imperfection, and aspect ratio are studied.  相似文献   

12.
Postbuckling, nonlinear bending and nonlinear vibration analyses are presented for a simply supported stiff thin film resting on a two-parameter elastic foundation in thermal environments. The stiff thin film is modeled as a nonlocal orthotropic plate which contains small scale effects. The elastomeric substrate with finite depth is modeled as a two-parameter elastic foundation. The thermal effects are included and the material properties of the substrate are assumed to be temperature-dependent. The governing equation that includes plate-foundation interaction is solved by a two-step perturbation technique. The numerical results reveal that the small scale parameter e0a reduces the postbuckling equilibrium paths, the static large deflections and natural frequencies, but increases the nonlinear to linear frequency ratios of the thin film slightly. The results also reveal that the effect of the small scale parameter is significant for compressive buckling, but less pronounced for static bending and marginal for free vibration of the thin film resting on an elastic foundation.  相似文献   

13.
This paper studied the large amplitude vibration and the nonlinear bending of a sandwich plate with carbon nanotube-reinforced composite (CNTRC) face sheets resting on an elastic foundation in thermal environments. The material properties of CNTRC face sheets are assumed to be graded in the thickness direction, and are estimated through a micromechanical model. The governing equation of the plate that includes plate-foundation interaction is solved by a two-step perturbation technique. The thermal effects are also included and the material properties of both CNTRC face sheets and homogeneous core layer are assumed to be temperature-dependent. A detailed parametric study is conducted to study the effects of nanotube volume fraction, core-to-face sheet thickness ratio, temperature change, foundation stiffness and in-plane boundary conditions on the nonlinear vibration characteristics and nonlinear bending behaviors of sandwich plates with functionally graded CNTRC face sheets. The results for the same plate with uniformly distributed CNTRC face sheets are also provided for comparison.  相似文献   

14.
This paper deals with the forced vibration behavior of nonlocal third-order shear deformable beam model of magneto–electro–thermo elastic (METE) nanobeams based on the nonlocal elasticity theory in conjunction with the von Kármán geometric nonlinearity. The METE nanobeam is assumed to be subjected to the external electric potential, magnetic potential and constant temperature rise. Based on the Hamilton principle, the nonlinear governing equations and corresponding boundary conditions are established and discretized using the generalized differential quadrature (GDQ) method. Thereafter, using a Galerkin-based numerical technique, the set of nonlinear governing equations is reduced into a time-varying set of ordinary differential equations of Duffing type. The pseudo-arc length continuum scheme is then adopted to solve the vectorized form of nonlinear parameterized equations. Finally, a comprehensive study is conducted to get an insight into the effects of different parameters such as nonlocal parameter, slenderness ratio, initial electric potential, initial external magnetic potential, temperature rise and type of boundary conditions on the natural frequency and forced vibration characteristics of METE nanobeams.  相似文献   

15.
The thermal buckling analysis of nanoplates is based on nonlocal elasticity theory with four-unknown shear deformation theory resting on Winkler–Pasternak elastic foundation. The nanoplate is assumed to be under three types of thermal loadings, namely uniform temperature rise, linear temperature rise, and nonlinear temperature rise through the thickness. The theory involves four unknown variables with small-scale effects, as against five in the case of other higher-order theories and first-order shear deformation theory. Closed-form solution for theory was also presented. Results are presented to discuss the influences of the nonlocal parameter, aspect ratio, side-to-thickness ratio, and elastic foundation parameters on the thermal buckling characteristics of analytical rectangular nanoplates.  相似文献   

16.
This paper investigates the nonlinear free vibration of functionally graded nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs) based on Timoshenko beam theory and von Kármán geometric nonlinearity. The material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTRCs) are assumed to be graded in the thickness direction and estimated though the rule of mixture. The Ritz method is employed to derive the governing eigenvalue equation which is then solved by a direct iterative method to obtain the nonlinear vibration frequencies of FG-CNTRC beams with different end supports. A detailed parametric study is conducted to study the influences of nanotube volume fraction, vibration amplitude, slenderness ratio and end supports on the nonlinear free vibration characteristics of FG-CNTRC beams. The results for uniformly distributed carbon nanotube-reinforced composite (UD-CNTRC) beams are also provided for comparison. Numerical results are presented in both tabular and graphical forms to investigate the effects of nanotube volume fraction, vibration amplitude, slenderness ratio, end supports and CNT distribution on the nonlinear free vibration characteristics of FG-CNTRC beams.  相似文献   

17.
This study aims to investigate the nonlinear forced vibration of functionally graded (FG) nanobeams. It is assumed that material properties are gradually graded in the direction of thickness. Nonlocal nonlinear Euler–Bernoulli beam theory is used to derive nonlocal governing equations of motion. The linear eigenmodes of FG nanobeams are used to transform a partial differential equation of motion into a system of ordinary differential equations via the Galerkin method. The multiple scale method is used to find the governing equations of the steady-state responses of FG nanobeams excited by a distributed harmonic force with constant intensity. It is also assumed that the working frequency is close to three times greater than the lowest natural frequency. Based on the equation governing the linear natural frequencies of FG nanobeams, the influence of the small scale parameter, material composition, and stiffness of the foundation on the linear relationship among natural frequencies is studied. Results show that superharmonic response or a combination of resonances may occur as well as a subharmonic response depending on the power-law index and stiffness of the foundation. Then the governing equations of a steady-state response of FG nanobeams for four possible solutions are obtained depending on the value of the small scale parameter. It is shown that the simplest response of FG nanobeams is a subharmonic response or superharmonic response. The equations governing the frequency–response curves are obtained and the effects of the power-law index and small scale parameter on them are discussed.  相似文献   

18.
Axial buckling analysis of double-walled Boron Nitride nanotubes (DWBNNTs) embedded in an elastic medium under combined electro-thermo-mechanical loadings is presented in this article. Virtual displacement method based on nonlocal cylindrical piezoelasticity continuum shell theory is employed to derive the equilibrium equations. Boron Nitride nanotube (BNNT) is assumed to be surrounded by a bundle of carbon nanotubes (CNTs) as elastic medium for reinforcement. The elastic medium is simulated as Winkler–Pasternak foundation, and adjacent layers interactions are assumed to have been coupled by van der Walls (vdW) force evaluated based on the Lennard–Jones model. The effects of parameters such as electric and thermal loads, elastic medium and small scale are investigated on the buckling behavior of the DWBNNTs. The electric field and its direction are found to have affected the magnitude of the critical buckling load. Moreover, an analysis is carried out to estimate the nonlocal critical electro-thermo-mechanical load for the axial buckling of embedded DWBNNTs.  相似文献   

19.
将非局部弹性理论和应变梯度理论结合,再根据流体滑移边界理论,建立了考虑流体和固体小尺度效应的充流单壁碳纳米管(SWCNT)流固耦合动力学模型,分别以非局部应力效应、应变梯度效应和流体滑移边界效应模拟微观小尺度效应对系统的影响,推导得出充流单壁碳纳米管的Euler-Bernoulli梁波动控制方程。通过对控制方程的求解,分析材料不同类型尺度效应对充流碳纳米管的振动和波动特性影响。结果显示,应变梯度效应和流体边界效应对低频波动起促进作用,对高频波动起阻尼作用,应力非局部效应则对波动始终产生阻尼作用。三种尺度效应对低流速系统的振动有促进作用,而对高流速系统产生阻尼作用。  相似文献   

20.
In the present research, free vibration study of functionally graded (FG) nanobeams with graded nonlocality in thermal environments is performed according to the third-order shear deformation beam theory. The present nanobeam is subjected to uniform and nonlinear temperature distributions. Thermo-elastic coefficients and nonlocal parameter of the FG nanobeam are graded in the thickness direction according to power-law form. The scale coefficient is taken into consideration implementing nonlocal elasticity of Eringen. The governing equations are derived through Hamilton's principle and are solved analytically. The frequency response is compared with those of nonlocal Euler–Bernoulli and Timoshenko beam models, and it is revealed that the proposed modeling can accurately predict the vibration frequencies of the FG nanobeams. The obtained results are presented for the thermo-mechanical vibrations of the FG nanobeams to investigate the effects of material graduation, nonlocal parameter, mode number, slenderness ratio, and thermal loading in detail. The present study is associated to aerospace, mechanical, and nuclear engineering structures that are under thermal loads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号