首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lithium and nitrogen dual acceptors-doped p-type ZnO thin films have been prepared using spray pyrolysis technique. The influence of dual acceptor (Li, N) doping on the structural, electrical, and optical properties of (Li, N):ZnO films are investigated in detail. The (Li, N):ZnO films exhibit good crystallinity with a preferred c-axis orientation. From AFM studies, it is found that the surface roughness of the thin films increases with the increase of doping percentage. The Hall Effect measurements showed p-type conductivity. The Hall measurements have been performed periodically up to seven months and it is observed that the films show p-type conductivity throughout the period of observation. The samples with Li:N ratio of 8:8 mol% showed the lowest resistivity of 35.78 Ω cm, while sample with Li:N ratio of 6:6 mol% showed highest carrier concentration. The PL spectra of (Li, N):ZnO films show a strong UV emission at room temperature. Furthermore, PL spectra show low intensity in deep level transition, indicating a low density of native defects. This indicates that the formation of intrinsic defects is effectively suppressed by dual acceptor (Li, N) doping in ZnO thin films. The chemical bonding states of N and Li in the films were examined by XPS analysis.  相似文献   

2.
Carbon was doped into Cr:AlN films. Microstructure analysis demonstrated that the Cr atom kept at AlN lattice when carbon content was lower. The doped carbon atoms formed graphite phases and C-N clusters dispersing in the films, which influenced the electric and magnetic properties significantly. When the resistivity was around 105-107 Ω cm under an alternating current (AC) frequency of 210 Hz, it increased with increasing carbon content, and when the resistivity was around 103 Ω cm under a higher AC frequency of 800 kHz, it decreased with increasing carbon content. The magnetisms for the carbon-doped samples are stronger than those of samples without carbon doping. The atomic magnetic moment (AMM) of the sample with a carbon content of 2.3 at.% was the highest (0.4μB/Cr). It was proposed that atomic migration of carbon might have occurred under high AC frequency. The formation of C-N compounds could consume part of the available nitrogen and then increased the density of N vacancy in the Cr:AlN lattice, which is favorable for coupling among bound magnetic polarons (BMP).  相似文献   

3.
A series of K doped Zn1−xMgxO thin films have been prepared by pulsed laser deposition (PLD). Hall-effect measurements indicate that the films exhibit stable p-type behavior with duration of at least six months. The band gap of the K doped Zn1−xMgxO films undergoes a blueshift due to the Mg incorporation. However, photoluminescence (PL) results reveal that the crystallinity decreased with the increasing of Mg content. The fabricated K doped p-type Zn0.95Mg0.05O thin film exhibits good electrical properties, with resistivity of 15.21 Ω cm and hole concentration of 5.54 × 1018 cm−3. Furthermore, a simple ZnO-based p-n heterojunction was prepared by deposition of a K-doped p-type Zn0.95Mg0.05O layer on Ga-doped n-type ZnO thin film with low resistivity. The p-n diode heterostructure exhibits typical rectification behavior of p-n junctions.  相似文献   

4.
ZnO thin films doped with Al concentrations of 1.0, 2.0, 3.0, 4.0, 5.0 at% were prepared by a sol-gel spin-coating method on glass substrates and respectively annealed at 550 °C for 2 h in hydrogen and air. The X-ray diffraction and selected-area electron diffraction results confirm that the Al doped ZnO thin films are of wurtzite hexagonal ZnO. The scanning electron microscope results indicate that the Al doped ZnO nanorod thin films can be got by annealing in hydrogen rather than in air. The optical properties reveal that the Al doped ZnO thin films have obviously enhanced transmittance in the visible region. The electrical properties show that the resistivity of 1.0 at% Al doped ZnO thin films has been remarkably reduced from 0.73 Ω m by annealing in air to 3.2 × 10−5 Ω m by annealing in hydrogen. It is originated that the Al doped ZnO nanorod thin films annealed in hydrogen increased in electron concentration and mobility due to the elimination of adsorbed oxygen species, and multicoordinated hydrogen.  相似文献   

5.
Gallium-doped ZnO (GZO) semiconductor thin films were prepared by a sol-gel spin coating process. The effects of Ga dopant concentrations on the microstructure, electrical resistivity, optical properties, and photoluminescence (PL) were studied. XRD results showed that all the as-prepared GZO films had a wurtzite phase and a preferred orientation along the [0 0 2] direction. ZnO thin films doped with Ga had lower electrical resistivity, lower RMS roughness, and improved optical transmittance in the visible region. The lowest average electrical resistivity value, 2.8 × 102 Ω cm, was achieved in the ZnO thin films doped with 2% Ga, which exhibited an average transmittance of 91.5%. This study also found that the optical band gap of Ga-doped films was 3.25 eV, slightly higher than that of undoped samples (3.23 eV), and the PL spectra of GZO films showed strong violet-light emission centers at about 2.86 eV (the corresponding wavelength of which is about 434 nm).  相似文献   

6.
Polycrystalline indium doped CdS0.2Se0.8 thin films with varying concentrations of indium have been prepared by spray pyrolysis at 300 °C. The as deposited films have been characterized by XRD, AFM, EDAX, optical and electrical resistivity measurement techniques. The XRD patterns show that the films are polycrystalline with hexagonal crystal structure irrespective of indium doping concentration. AFM studies reveal that the RMS surface roughness of film decreases from 34.68 to 17.76 with increase in indium doping concentration up to 0.15 mol% in CdS0.2Se0.8 thin films and further it increases for higher indium doping concentrations. Traces of indium in CdS0.2Se0.8 thin films have been observed from EDAX studies. The optical band gap energy of CdS0.2Se0.8 thin film is found to decrease from 1.91 eV to 1.67 eV with indium doping up to 0.15 mol% and increase after 0.15 mol%. The electrical resistivity measurement shows that the films are semiconducting with minimum resistivity of 3.71 × 104 Ω cm observed at 0.15 mol% indium doping. Thermoelectric power measurements show that films exhibit n-type conductivity.  相似文献   

7.
In this study, N-doped ZnO thin films were fabricated by oxidation of ZnxNy films. The ZnxNy thin films were deposited on glass substrates by pulsed filtered cathodic vacuum arc deposition (PFCVAD) using metallic zinc wire (99.999%) as a cathode target in pure nitrogen plasma. The influence of oxidation temperature, on the electrical, structural and optical properties of N-doped ZnO films was investigated. P-type conduction was achieved for the N-doped ZnO obtained at 450 °C by oxidation of ZnxNy, with a resistivity of 16.1 Ω cm, hole concentration of 2.03 × 1016 cm−3 and Hall mobility of 19 cm2/V s. X-ray photoelectron spectroscopy (XPS) analysis confirmed the incorporation of N into the ZnO films. X-ray diffraction (XRD) pattern showed that the films as-deposited and oxidized at 350 °C were amorphous. However, the oxidized films in air atmosphere at 450-550 °C were polycrystalline without preferential orientation. In room temperature photoluminescence (PL) spectra, an ultraviolet (UV) peak was seen for all the samples. In addition, a broad deep level emission was observed.  相似文献   

8.
Cu (0.1 mol%) doped ZnO nanopowders have been successfully synthesized by a wet chemical method at a relatively low temperature (300 °C). Powder X-ray diffraction (PXRD) analysis, scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, UV-Visible spectroscopy, Photoluminescence (PL) and Electron Paramagnetic Resonance (EPR) measurements were used for characterization. PXRD results confirm that the nanopowders exhibit hexagonal wurtzite structure of ZnO without any secondary phase. The particle size of as-formed product has been calculated by Williamson-Hall (W-H) plots and Scherrer's formula is found to be in the range of ∼40 nm. TEM image confirms the nano size crystalline nature of Cu doped ZnO. SEM micrographs of undoped and Cu doped ZnO show highly porous with large voids. UV-Vis spectrum showed a red shift in the absorption edge in Cu doped ZnO. PL spectra show prominent peaks corresponding to near band edge UV emission and defect related green emission in the visible region at room temperature and their possible mechanisms have been discussed. The EPR spectrum exhibits a broad resonance signal at g ∼ 2.049, and two narrow resonances one at g ∼ 1.990 and other at g ∼ 1.950. The broad resonance signal at g ∼ 2.049 is a characteristic of Cu2+ ion whereas the signal at g ∼ 1.990 and g ∼ 1.950 can be attributed to ionized oxygen vacancies and shallow donors respectively. The spin concentration (N) and paramagnetic susceptibility (χ) have been evaluated and discussed.  相似文献   

9.
Metal-doped (B and Ta) ZnO thin films were deposited by the electrospraying method onto a heated glass substrate. The structural, electrical and optical properties of the films were investigated as a function of dopant concentration in the solution and also as a function of annealing temperature. The results show that all the prepared metal-doped ZnO films were polycrystalline in nature with a (0 0 2) preferred orientation. As the amounts of dopant were increased in the starting solution, the crystallinity and transmittance decreased. On the other hand, heat treatment of the films enhanced the transmittance, Hall mobility, carrier concentration and crystallinity. It was also observed that 2 at.% is the optimal doping amount in order to achieve the minimum resistivity and maximum optical transmittance. As-deposited films have high resistivity and low optical transmittance. The annealing of the as-deposited thin films in air resulted in the reduction of resistivity. Depending on the characteristics of dopant, mainly ionic radius, the effects of dopant were studied on the properties of ZnO thin films. Boron and tantalum have been considered as dopants, tantalum being the superior of the two, since it showed the lower resistivity and higher carrier concentration as well as higher mobility. The minimum value of resistivity was 1.95 × 10− 4 Ω cm (15 Ω/□) with an optical transmittance more than 93% in the visible region and minimum resistivity of 2.16 × 10− 4 Ω cm (18 Ω/□) with an optical transmittance greater than 96% for 2 at. % tantalum- and boron-doped ZnO films respectively. The present values of resistivities were closer to the indium tin oxide (ITO) resistivity and also closest to the lowest resistivity values among the ZnO films that were previously reported. The prepared films exhibit the good crystalline structure, homogenous surface, high optical transmittance and low resistivity that are preferable for optical devices.  相似文献   

10.
Zinc oxide thin films with low resistivity have been deposited on glass substrates by Li-N dual-acceptor doping method via a modified successive ionic layer adsorption and reaction process. The thin films were systematically characterized via scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction, ultraviolet-visible spectrophotometry and fluorescence spectrophotometry. The resistivity of zinc oxide film was found to be 1.04 Ω cm with a Hall mobility of 0.749 cm2 V−1 s−1 and carrier concentration of 8.02 × 1018 cm−3. The Li-N dual-acceptor doped zinc oxide films showed good crystallinity with prior c-axis orientation, and high transmittance of about 80% in visible range. Moreover, the effects of Li doping level and other parameters on crystallinity, electrical and ultraviolet emission of zinc oxide films were investigated.  相似文献   

11.
Cost effective, ruthenium metal free rhodamine B dye has been chemically adsorbed on ZnO films consisting of nanobeads to serve as a photo anode in dye sensitized solar cells. These ZnO films were chemically synthesized at room temperature (27 °C) on to fluorine doped tin oxide (FTO) coated glass substrates followed by annealing at 200 °C. These films consisting of inter connected nanobeads (20-40 nm) which are due to the agglomeration of very small size particles (3-5 nm) leading to high surface area. The film shows wurtzite structure having high crystallinity with optical direct band gap of 3.3 eV. Optical absorbance measurements for rhodamine B dye covered ZnO film revealed the good coverage in the visible region (460-590 nm) of the solar spectrum. With poly-iodide liquid as an electrolyte, device exhibits photon to electric energy conversion efficiency (η) of 1.26% under AM 1.5G illumination at 100 mW/cm2.  相似文献   

12.
Bi-doped ZnO thin films were grown on glass substrates by ratio frequency (rf) magnetron sputtering technique and followed by annealing at 400 °C for 4 h in vacuum (~ 10− 1 Pa). The effect of argon pressure on the structural, optical, and electrical properties of the Bi-doped films were investigated. The XRD patterns show that the thin films were highly textured along the c-axis and perpendicular to the surface of the substrate. Some excellent properties, such as high transmittance (about 85%) in visible region, low resistivity value of 1.89 × 10− 3 W cm and high carrier density of 3.45 × 1020 cm− 3 were obtained for the film deposited at the argon pressure of 2.0 Pa. The optical band gap of the films was found to increase from 3.08 to 3.29 eV as deposition pressure increased from 1 to 3 Pa. The effects of post-annealing treatments had been considered. In spite of its low conductivity comparing with other TCOs, Bi-doping didn't appreciably affect the optical transparency in the visible range of ZnO thin films.  相似文献   

13.
An improvement in the thermoelectric power factor of Al doped ZnO has been achieved by means of co-doping with indium using a dual magnetron sputtering system. The concentration of indium in the film was varied from 0 to 10 atomic % by varying the RF power of the In target, with the ZnO:Al target fixed at 100 W. It has been found that the films with In concentrations at or below 5 at.% have no significant change in microstructure, and yet a marked improvement in thermopower. At higher doping levels, the Seebeck coefficient continues to increase, however poly-crystallinity is induced in the ZnO matrix which results in a considerable decrease in electrical conductivity. This factor ultimately has a negative impact on the materials power factor. Taking into account the films studied, (ZnO)Al.03In.02 exhibited the best thermoelectric properties with an electrical conductivity of 5.88 × 102 S/cm and a Seebeck coefficient of −220 μV/K at 975 K, resulting in a power factor is 22.1 × 10−4 Wm−1 K−2, which is three times greater than for the film with no In doping. Film microstructure, composition, and thermal stability were investigated using X-ray diffraction, scanning electron microscopy, and Auger electron spectroscopy.  相似文献   

14.
Zinc-Tin-Oxide (ZTO) thin films were deposited on glass substrate with varying concentrations (ZnO:SnO2; 100:0, 90:10, 70:30 and 50:50 wt.%) at room temperature by flash evaporation technique. These deposited ZTO films were annealed at 450 °C in vacuum. These films were characterized to study the effect of annealing and addition of SnO2 concentration on the structural, chemical and electrical properties. The XRD analysis indicates that crystallization of the ZTO films strongly depends on the concentration of SnO2 and post annealing where annealed films showed polycrystalline nature. Atomic force microscopy (AFM) images manifest the surface morphology of these ZTO thin films. The XPS core level spectra of Zn(2p), O(1s) and Sn(3d) have been deconvoluted into their Gaussian component to evaluate the chemical changes, while valence band spectra reveal the electronic structures of these films. A small shift in Zn(2p) and Sn(3d) core level towards higher binding energy and O(1s) core level towards lower binding energy have been observed. The minimum electrical resistivity (ρ ≈ 3.69 × 10−2 Ω-cm), maximum carrier concentration (n ≈ 3.26 × 1019 cm−3) and Hall mobility (μ ≈ 5.2 cm2 v−1 s−1) were obtained for as-prepared ZTO (50:50) film thereafter move towards lowest resistivity (ρ ≈ 1.12 × 10−3 Ω-cm), highest carrier concentration (n ≈ 2.96 × 1020 cm−3) and mobility (μ ≈ 18.8 cm2 v−1 s−1) for annealed ZTO (50:50) thin film.  相似文献   

15.
Aluminum doped zinc oxide (ZnO:Al) films were reactively sputtered at a high discharge power from dual rotating metallic targets (Zn:Al = 99.5:0.5 wt.%). Deposition conditions like substrate temperature and working points were varied in order to prepare high quality ZnO:Al films. The influences on electrical and optical ZnO:Al thin film properties and surface texture before and after chemical etching in diluted HCl were studied in order to achieve light scattering films as front contact for solar cells. High dynamic deposition rate close to 90 nm m/min and high Hall mobility of up to 47 cm2/Vs were obtained. Transmission of more than 85% in the visible spectral range is obtained for all ZnO:Al films in this study. In addition, the absorption in near infrared region is low due to low doping. Surface texture after etching is usually much rougher than before. However, some films reveal after etching small surface features that are similar to initial surface features. We propose a relationship between initial and post-etched surface textures.  相似文献   

16.
Nanocrystalline ZnO thin films were prepared on glass substrates by using spin coating technique. The effect of annealing temperature (400-700 °C) on structural, compositional, microstructural, morphological, electrical and optical properties of ZnO thin films were studied by X-ray diffraction (XRD), Energy dispersive Spectroscopy (EDS), Atomic Force Microscopy (AFM), High Resolution Transmission Microscopy (HRTEM), Scanning Electron Microscopy (SEM), Electrical conductivity and UV-visible Spectroscopy (UV-vis). XRD measurements show that all the films are nanocrystallized in the hexagonal wurtzite structure and present a random orientation. The crystallite size increases with increasing annealing temperature. These modifications influence the optical properties. The AFM analysis revealed that the surface morphology is smooth. The HRTEM analysis of ZnO thin film annealed at 700 °C confirms nanocrystalline nature of film. The SEM results shows that a uniform surface morphology and the nanoparticles are fine with an average grain size of about 40-60 nm. The dc room temperature electrical conductivity of ZnO thin films were increased from 10−6 to 10−5 (Ω cm)−1 with increase in annealing temperature. The electron carrier concentration (n) and mobility (μ) of ZnO films annealed at 400-700 °C were estimated to be of the order of 4.75-7.10 × 1019 cm−3 and 2.98-5.20 × 10−5 cm2 V−1 S−1.The optical band gap has been determined from the absorption coefficient. We found that the optical band gap energy decreases from 3.32 eV to 3.18 eV with increasing annealing temperature between 400 and 700 °C. This means that the optical quality of ZnO films is improved by annealing.It is observed that the ZnO thin film annealing at 700 °C has a smooth and flat texture suited for different optoelectronic applications.  相似文献   

17.
Filtered vacuum (cathodic) arc deposition (FVAD, FCVD) of metallic and ceramic thin films at low substrate temperature (50-400 °C) is realized by magnetically directing vacuum arc produced, highly ionized, and energetic plasma beam onto substrates, obtaining high quality coatings at high deposition rates. The plasma beam is magnetically filtered to remove macroparticles that are also produced by the arc. The deposited films are usually characterized by their good optical quality and high adhesion to the substrate. Transparent and electrically conducting (TCO) thin films of ZnO, SnO2, In2O3:Sn (ITO), ZnO:Al (AZO), ZnO:Ga, ZnO:Sb, ZnO:Mg and several types of zinc-stannate oxides (ZnSnO3, Zn2SnO4), which could be used in solar cells, optoelectronic devices, and as gas sensors, have been successfully deposited by FVAD using pure or alloyed zinc cathodes. The oxides are obtained by operating the system with oxygen background at low pressure. Post-deposition treatment has also been applied to improve the properties of TCO films.The deposition rate of FVAD ZnO and ZnO:M thin films, where M is a doping or alloying metal, is in the range of 0.2-15 nm/s. The films are generally nonstoichiometric, polycrystalline n-type semiconductors. In most cases, ZnO films have a wurtzite structure. FVAD of p-type ZnO has also been achieved by Sb doping. The electrical conductivity of as-deposited n-type thin ZnO film is in the range 0.2-6 × 10− 5 Ω m, carrier electron density is 1023-2 × 1026 m− 3, and electron mobility is in the range 10-40 cm2/V s, depending on the deposition parameters: arc current, oxygen pressure, substrate bias, and substrate temperature. As the energy band gap of FVAD ZnO films is ∼ 3.3 eV and its extinction coefficient (k) in the visible and near-IR range is smaller than 0.02, the optical transmission of 500 nm thick ZnO film is ∼ 0.90.  相似文献   

18.
Ag-doped Ca3Co4O9 thin films with nominal composition of Ca3−xAgxCo4O9 (x = 0∼0.4) have been prepared on sapphire (0 0 0 1) substrates by pulsed laser deposition (PLD). Structural characterizations and surface chemical states analysis have shown that Ag substitution for Ca in the thin films can be achieved with doping amount of x ≤ 0.15; while x > 0.15, excessive Ag was found as isolated and metallic species, resulting in composite structure. Based on the perfect c-axis orientation of the thin films, Ag-doping has been found to facilitate a remarkable decrease in the in-plane electrical resistivity. However, if doped beyond the substitution limit, excessive Ag was observed to severely reduce the Seebeck coefficient. Through carrier concentration adjustment by Ag-substitution, power factor of the Ag-Ca3Co4O9 thin films could reach 0.73 mW m−1 K−2 at around 700 K, which was about 16% higher than that of the pure Ca3Co4O9 thin film.  相似文献   

19.
The temperature influenced morphology evolution and its effect on physico-chemical properties of ZnO thin films deposited onto glass substrates from alkaline environment, complexed via EDTA chelant are systematically studied. Temperature dependent growth mechanism model for change in microstructure is proposed. The physico-chemical properties of deposited films are studied by the analysis of structural, morphological, surface wettabillity, optical and electrical properties. Nanocrystalline ZnO thin films with hexagonal structure having mari-gold flowers and tetra pods like morphologies with optical band gaps 3.1 and 2.96 eV showed drastic surface wettabillity transformation from highly hydrophobic (142°) to superhydrophilic (<5°) behavior for bath placed at room temperature (300 K) and 333 K, respectively. The room temperature photoluminescence spectrum in the visible light region showed decreasing in intensity and electric resistivity measurement showed reduction in electrical resistivity from 106 to 104 Ω cm as consequence of increment in deposition temperature. The morphology evolution as impact of bath temperature can provide wide scope with significant change in physico-chemical properties of smart ZnO, which can be potentially tuned in many functional applications with feasibility.  相似文献   

20.
Gadolinium (Gd) doped cadmium oxide (CdO) thin films are grown at low temperature (100 °C) using pulsed laser deposition technique. The effect of oxygen partial pressures on structural, optical, and electrical properties is studied. X-ray diffraction studies reveal that these films are polycrystalline in nature with preferred orientation along (1 1 1) direction. Atomic force microscopy studies show that these films are very smooth with maximum root mean square roughness of 0.77 nm. These films are highly transparent and transparency of the films increases with increase in oxygen partial pressure. We observe an increase in optical bandgap of CdO films by Gd doping. The maximum optical band gap of 3.4 eV is observed for films grown at 1 × 10−5 mbar. The electrical resistivity of the films first decreases and then increases with increase in oxygen partial pressure. The lowest electrical resistivity of 2.71 × 10−5 Ω cm and highest mobility of 258 cm2/Vs is observed. These low temperature processed highly conducting, transparent, and wide bandgap semiconducting films could be used for flexible optoelectronic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号