首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies on the reduction and swelling behaviors of fired pellets, made by mixing hematite iron ore fines of ?100, ?18 + 25, and ?10 + 16 mesh sizes in different proportions, were carried out with low-grade coal in the temperature range of 850–1000°C with an aim to promote the massive utilization of fines in ironmaking. The rate of reduction in all the fired iron ore pellets increased markedly with an increase in temperature up to 1000°C and it was more intense in the first 15-min soak time. Relatively higher reduction rates and swellings/shrinkage were observed in the pellets made by the addition of larger size (+100 mesh) particles in the matrix of ?100 mesh size fines. In general, highest swelling was observed in the fired pellets at a reduction temperature of 850°C, followed by a decrease at 900°C. At both these temperatures, the percentage of swelling increased with reduction time up to the range studied (120 min). The fired pellets reduced at temperatures of 950°C and 1000°C, showed shrinkage, and the extent of this shrinkage increased with increase in exposure time at 950°C. The percentage swelling/shrinkage in the fired pellets was found to be related to their crushing strengths and porosities.  相似文献   

2.
In the present investigation, fired pellets were made by mixing hematite iron ore fines of ?100, ?16 + 18, and ?8 + 10 mesh size in different ratios and studies on their reduction kinetics in Lakhanpur, Orient OC-2 and Belpahar coals were carried out at temperatures ranging from 850°C to 1000°C with a view toward promoting the massive utilization of fines in ironmaking. The rate of reduction in all the fired iron ore pellets increased markedly with an increase in temperature up to 1000°C, and it was more intense in the first 30 min. The values of activation energy, calculated from integral and differential approaches, for the reduction of fired pellets (prepared from iron ore fines of ?100 mesh size) in coals were found to be in the range 131–148 and 130–181 kJ mol?1 (for α = 0.2 to 0.8), indicating the process is controlled by a carbon gasification reaction. The addition of selected larger size particles in the matrix of ?100 mesh size fines up to the extent studied decreased the activation energy and slightly increased the reduction rates of resultant fired pellets. In comparison to coal, the reduction of fired pellets in char was characterized by significantly lower reduction rates and higher activation energy.  相似文献   

3.
Studies on isothermal reduction kinetics (with F grade coal) in fired pellets of hematite iron ores, procured from four different mines of Orissa, were carried out in the temperature range of 850–1000°C to provide information for the Indian sponge iron plants. The rate of reduction in all the fired iron ore pellets increased markedly with a rise of temperature up to 950°C, and thereafter it decreased at 1000°C. The rate was more intense in the first 30 minutes. All iron ores exhibited almost complete reduction in their pellets at temperatures of 900 and 950°C in < 2 hours' heating time duration, and the final product morphologies consisted of prominent cracks. The kinetic model equation 1 ? (1 ? α)1/3 = kt was found to fit best to the experimental data, and the values of apparent activation energy were evaluated. Reductions of D. R. Pattnaik and M. G. Mohanty iron ore pellets were characterized by higher activation energies (183 and 150 kJ mol?1), indicating carbon gasification reaction to be the rate-controlling step. The results established lower values of activation energy (83 and 84 kJ mol?1) for the reduction of G. M. OMC Ltd. and Sakaruddin iron ore pellets, proposing their overall rates to be controlled by indirect reduction reactions.  相似文献   

4.
In the present investigation, boric acid was used in the ball formation of iron ore fines to improve the compressive strength (CS) of fired pellet. Boric acid was used in combination with carboxymethyl cellulose (CMC) and saw dust and the pellets were fired at different firing temperatures from 1000 to 1300 °C. Box–Behnken statistical design was followed for analyzing the CS at different levels of boric acid, CMC and firing temperature. Results were discussed using 2D surface plots. Response function predictions determined by the regression analysis showed coefficient of correlation (R2) for CS as 0.96. Highest CS of 450 kg/pellet was obtained with addition of 1% boric acid, 0.1% CMC and a temperature of 1300 °C within the range of parameters under investigation.  相似文献   

5.
Studies on the chemical and physical properties, and the reduction behavior (in coal) of hematite iron ores procured from 10 different mines of Orissa, were undertaken to provide information for the iron and steel industries (sponge iron plants in particular). The majority of the iron ores were found to have high iron and low alumina and silica contents. All these iron ores were free from the deleterious elements (S, P, As, Pb, alkalies, etc.). The results indicated lower values of shatter and abrasion indices, and higher values of tumbler index in all the iron ore lumps except Serazuddin (previous) and Khanda Bandha OMC Ltd. For all the fired iron ore pellets, the degree of reduction in coal was more intense in the first 30 min, after which it became small. Slow heating led to higher degree of reduction in fired pellets than rapid heating. All the iron ores exhibited more than a 90% reduction in their fired pellets in 2-h time interval at a temperature of 900°C. Iron ore lumps showed a lower degree of reduction than the corresponding fired pellets.  相似文献   

6.
Studies on the chemical and physical properties (proximate analysis, sulphur content, reactivity, iron ore reduction potential, caking index, and ash fusion temperatures) of coals, procured from 16 different mines in Orissa, India, were undertaken for their judicial selection in Indian sponge iron plants. These coals were found to have low sulphur (range of 0.40–0.66%) and a moderate-to-high ash (range: 22–53%) contents. The results indicated that there were no caking characteristics in any of the coals except Basundhara. The majority of the studied coal ashes were found to have higher fusion temperatures (ST: 1349–1547°C; HT: 1500–1663°C; and FT: 1510–1701°C). An increase in the fixed carbon content in the coal char, in general, led to a decrease in its reactivity toward CO2. The majority of the chars exhibited significantly higher reactivities (>4.0 cc of CO/g·sec). Further reduction studies in coal chars at 900°C indicated an increase in the degree of reduction of fired hematite iron ore pellets with an increase of char reactivity and reduction time. The authors recommend using the majority of the studied coals as such and some of them (Lakhanpur, Samleshwari, Orient OC–4, and Dhera coals) after blending or beneficiation.  相似文献   

7.
Reduction of iron ore–coal composite pellets in multi-layers at rotary hearth furnace (RHF) is limited by heat and mass transfer. Effect of various parameters like pellet shape, size, and bed packing material that are supposed to influence the heat and mass transfer in the pellet bed, have been investigated, on the reduction behaviour of iron ore–coal composite pellets at 1250 °C for 20 min in a laboratory scale RHF. Reduced pellets have been characterised through weight loss measurement, estimation of shrinkage, porosity, and qualitative, quantitative phase analysis by XRD. A significant difference in the degree of reduction is observed layer-wise in the pellet bed with the variation in pellet shape and size. Pellet bed without any packing material or packed with coal have demonstrated higher degrees of reduction compared to the pellet bed packed with graphite and sand.  相似文献   

8.
Pre-oxidation of fines of magnetite containing materials is usually carried out to get better yield of metals. Titaniferous magnetite ore (TMO) is one kind of low-grade iron ore (around 45–50% of total Fe) with a significant amount of TiO2 (23.23%) and V2O5 (0.403%). TMO fines have been pre-oxidised at 973?K (700°C) for 9?h under air atmosphere. The effect of reduction of raw TMO fines as well as the pre-oxidised TMO fines using boiler grade coal in the form of cylindrical briquettes has been studied in the temperature range of 1273?K (1000°C) to 1473?K (1200°C) for periods of 10, 20, 30, 40 and 60?min to estimate the relative yield of iron. The influence of temperature and time on reduction experiments has also been investigated with XRD, FESEM analyses along with chemical analysis of the reduced samples. The most novel result is that the yield of Fe by direct reduction of raw TMO (92.42%) is even marginally better than that of reduction of pre-oxidised TMO (90.89%) at 1473?K (1200°C) for 60?min. Thus the single-step reduction of raw TMO is techno-economically more viable than the pre-oxidation followed by reduction technique.  相似文献   

9.
Influence of microwave treatment on the previously proposed phosphorus removal process of oolitic high phosphorus iron ore (gaseous reduction followed by melting separation) has been studied. Microwave treatment was carried out using a high-temperature microwave reactor (Model: MS-WH). Untreated ore fines and microwaved ore fines were then characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and thermogravimetric analysis (TGA). Thereafter, experiments on the proposed phosphorus removal process were conducted to examine the effect of microwave treatment. Results show that microwave treatment could change the microstructure of the ore fines and has an intensification effect on its gaseous reduction by reducing gas internal resistance, increasing chemical reaction rate and postponing the occurrence of sintering. Results of gaseous reduction tests using tubular furnace indicate both microwave treatment and high reduction temperature high as 1273 K (1000 °C) are needed to totally break down the dense oolite and metallization rate of the ore fines treated using microwave power of 450 W could reach 90 pct under 1273 K (1000 °C) and for 2 hours. Results of melting separation tests of the reduced ore fines with a metallization rate of 90 pct show that, in addition to the melting conditions in our previous studies, introducing 3 pct Na2CO3 to the highly reduced ore fines is necessary, and metal recovery rate and phosphorus content of metal could reach 83 pct and 0.31 mass pct, respectively.  相似文献   

10.
《钢铁冶炼》2013,40(6):443-451
Abstract

Iron nuggets can be obtained from ore–coal composite pellets by high temperature reduction. Alumina in the ore plays a vital role in slag–metal separation during nugget formation, as it increases the liquidus temperature of the slag. In this study, the effect of carbon content, reduction temperature and lime addition on slag–metal separation and nugget formation of varying alumina iron ore fines were studied by means of thermodynamic modelling. The results were validated by conducting experiments using iron ore fines with alumina levels ranging from 1·85 to 6·15%. Results showed that increase in reduction temperature enhances slag metal separation, whereas increasing alumina and carbon content beyond the optimum level adversely affects separation. Carbon below the required amount decreases the metal recovery, and carbon above the required amount reduces the silica and alters the slag chemistry. Optimum conditions were established to produce iron nuggets with complete slag–metal separation using iron ore–coal composite pellets made from high alumina iron ore fines. These were reduction temperature of 1400°C, reduction time minimum of 15 min, carbon input of 80% of theoretical requirement and CaO input of 2·3, 3·0 and 4·2 wt-% for 1·85, 4·0 and 6·15 wt-% alumina ores respectively.  相似文献   

11.
《钢铁冶炼》2013,40(5):354-362
Abstract

Cracking occurs in the first step of gaseous reduction of hematite iron ore, to magnetite, and can lead to the formation of fine material, with deleterious effects on operation of shaft furnaces. To study this, samples of three ore types from the Northern Cape iron ore field in South Africa, and one blended ore from this region, were studied. The methods were high temperature microscopy (during reduction) and quantification of fines formation following reduction disintegration tests. The ore types do differ significantly with regards to their propensity to form fines. Although disintegration is clearly triggered by reduction, no direct correlation could be established between the degree of reduction and the amount of fines generated. Reduction disintegration increased with higher hydrogen percentages (>5%) in the reduction gas, and at higher temperatures (in the 500–700°C range). Disintegration of the samples decreased at temperatures >750°C. There was no correlation between the presence of gangue minerals and fines formation.  相似文献   

12.
Iron ore pellets abrade during handling and produce dust. This study was conducted to determine what factors affect pellet dustiness, and whether dustiness can be related to the abrasion index. Factors studied included bed depth within a straight grate furnace; pellet chemistry; firing temperature; coke breeze addition; and tumble index. Abrasion indices for all pellet samples ranged from 1.9–5.0% (20 samples) and from 7.1–27.5% (5 samples). Pellets were dropped in an enclosed tower, which enabled the collection of airborne particles generated during pellet breakdown. The quantity of airborne particles generated by each pellet type was 10–100 mg/kg-drop, or 50–500 mg/kg over five drops through the tower. Pellet dustiness was predominantly affected by pellet chemistry and by pellet firing temperature. Results showed a nearly 21% increase in dustiness for every percent decrease in firing temperature – this was based on a typical firing temperature of 1280°C. Pellet dustiness was regressed to the pellet abrasion index (for AI < 5%), which yielded a correlation coefficient of 0.22. These results show that, although AI is one of the best indicators of fired pellet quality and can indicate high levels of dust, it could not explain the dustiness of good quality pellets.

The second paper (Iron Ore Pellet Dustiness Part II) explains the relationship between AI and dust for good-quality pellets; and compares fines generation between pellets fired in Straight-Grate (Traveling Grate) and Grate-Kiln furnaces.  相似文献   

13.
Additives can give rise to obvious, step-wise changes both in the oxidation process and in the sintering process. Therefore, the oxidation and sintering characteristics measured in dried pellets prepared from pure magnetite concentrates can not be representative for those characteristics in dried pellets containing additives. The oxidation and sintering characteristics of magnetite iron ore pellets balled with a novel complex binder (namely MHA) were mainly investigated by batch isothermal oxidation measurements in this research. Combined results reveal that the thermal decomposition of MHA binder influences the oxidation and sintering processes of dried pellets. Oxidation rate of pellets increases obviously with increasing the oxidation temperature in the range from 800°C to 1000°C. And the remaining FeO content declines gradually when separately heated for 10 min at low temperature (<1000°C). However, the oxidation rate of pellets decreases distinctly when oxidation temperature is higher than 1000°C. In addition, when oxidation temperature increases from 1000°C to 1250°C, the FeO content of pellets goes up obviously, particularly at 1250°C. The FeO content in the core of sintered pellets heated at 1250°C can even reach 29.68%. SEM spectrum analysis demonstrate that some iron appears in forms of wustite in sintered pellets, which indicates that the reduction reaction of iron oxide occurs during the high temperature sintering process. This is explained by the occurrence of reducing atmospheres because of the pyrogenic decomposition of MHA binder.  相似文献   

14.
The article presents the reduction roasting followed by low intensity magnetic separation studies of a low grade Mn ore assaying 27.7% Mn and 26.1% Fe in order to obtain a Mn rich non-magnetic concentrate. The reflected light microscopic studies followed by the liberation studies of the as-received sample using quantitative mineralogical evaluation by scanning electron microscope suggested a poor liberation pattern of the constituent Mn and Fe minerals owing to a complex association of the different phases present. The reduction roasting studies carried out while varying different process parameters such as ore particle size, temperature, reductant content and residence time ended up with products containing 45–48% Mn with a Mn/Fe ratio of 5–6 at a yield of ~ 60% with the optimum level of conditions such as temperature: 800–850 °C, time: 90–120 min and charcoal: 10–12%. The scanning electron microscopy–energy dispersive X-ray spectroscopy studies of the roasted product reported manganite as the major Mn bearing phase while magnetite was found to be the major iron bearing phase.  相似文献   

15.
The need to develop green steelmaking techniques has led to the replacement of reducing agents such as CO with H2. H2 and N2/H2 mixtures can be used for the carbothermal reduction of iron ore. Herein, the reduction swelling index (RSI) of iron ore pellets in a forming gas (N2/H2) atmosphere at temperatures of 700–1000 °C is investigated and it is compared with that in pure H2. It is showed in the experimental results that the RSI increases with increasing temperature for both the H2 and N2/H2 atmospheres. The maximum swelling is reached approximately 5 min into the H2 reduction process, while in the N2/H2 atmosphere, it is reached after 25–45 min of reduction, depending on the temperature. When the reduction temperature exceeds 900 °C, the RSI is greater than 20%. Scanning electron microscopy/energy-dispersive X-ray spectroscopy is performed to detect the changes in the microstructure and chemical composition of the samples. The nonreduced areas in the reduced pellets during the N2/H2 reduction process are analyzed using light optical microscopy.  相似文献   

16.
Measurements were made of the rate of equimolar counterdiffusion of hydrogen and water vapor through porous iron formed by the reduction of dense hematite, magnetite, and commercial iron ore pellets with hydrogen. The experiments were conducted at temperatures between 400° and 1000°C and at pressures between 0.1 and 40 atm. It is demonstrated that the structure of the porous iron is primarily a function of reduction temperature and that the diffusion process at the higher reduction temperatures is normal. The effect of gaseous diffusion on the rate of reduction of dense hematite with hydrogen is discussed. It is shown that gaseous diffusion limits the rate at the higher temperatures and pressures.  相似文献   

17.
《钢铁冶炼》2013,40(5):327-337
Abstract

Pellet plant (4·2 MPta capacity) of JSW Steel Ltd imports iron ore fines from different mines to produce pellets for its Corex and Blast Furnace plants. The pelletisation process involves drying the ore fines to reduce the moisture content to less than 1%, grinding in open circuit ball mills to get required fineness. To produce good quality of pellets certain additives are important and limestone is employed for modifying the pellet basicity. Iron ore fines of ?10 mm size and limestone are ground together in a ball mill to get sufficient fineness for the balling process. However, as limestone is harder than iron ore fines the + 100 mesh size limestone particles is higher than required and not all the limestone is fully consumed in the reaction for melt formation. Microstructural studies were conducted under a Leica DMRX polarized microscope at different level fineness (?325# ? 56, 58 and 60%) to investigate its effect on the pellet quality. The cold crushing strength of the pellet improved from 203 to 220 kg p?1 with increase in fineness. With increase in percentage of ?325# particle size in the ground product RDI of the pellet decreased from 13·8 to 11·9% with increased melt formation from 5 to 9%. With increase in fineness ?325# from 56 to 60% the 150 to 500 μm size pores decreased from 51·8 to 13·6%.  相似文献   

18.
An experimental study was conducted to determine the reduction behaviour of olivine iron ore pellets and associated reduction mechanisms in the experimental blast furnace (EBF) located at Luleå. Two sets of EBF samples, namely slowly annealed excavated samples and rapidly quenched probe samples of olivine bearing iron ore pellets were examined in detail. Pellet samples were analysed using SEM, XRD and SIROQUANT analysis to quantitatively determine iron ore phase transformations during descent in the EBF. In the tested EBF campaign, up to 75% of reduction occurred at less than 1100°C, i.e. before the pellet reached the cohesive zone while rest of 25% reduction was completed when pellets reached a temperature of 1300°C and hence within the cohesive zone. The reduction degree of pellets was found to have a linear correlation with distance from the stock line of the EBF. This study showed that the presence of olivine did not have a significant effect on reduction degree for temperatures less than 1100°C in the upper zone of the EBF. However, olivine increased the reduction rate in the final stage of reduction for temperatures in excess of 1100°C in the cohesive zone, which was attributed to the formation of an increased amount of molten FeO containing slag within the pellet. This study is expected to make important contributions towards further improvements in the pellet design as well as the optimization of blast furnace operation and efficiency.  相似文献   

19.
《钢铁冶炼》2013,40(1):59-64
Abstract

Experiments were carried out by testing the specimens of separate layers of iron and coal and single pellets thermogravimetrically in a nitrogen atmosphere to study the non‐isothermal reduction mechanisms of vanadium–titanomagnetite–non‐coking coal mixed pellets. The degree of reduction was measured by the weight loss. The E values of the pellet reduction were calculated based on the mass action law. It was found that with increasing temperature the reduction processes may be divided into four stages: reduction via CO and H2 from volatiles at 400–650°C, reduction via H2 and C generated by cracking of hydrocarbon at 650–850°C, direct reduction of carbon via gaseous intermediates at 850–1050°C and direct reduction of carbon above 1050°C.  相似文献   

20.
The Abrasion Index (AI) describes fines generation from iron ore pellets, and is one of the most common indicators of pellet quality. In a typical pellet plant, dust is generated during the process and then captured. Can the dust be measured and used to predict AI? In this paper, the feasibility of using airborne dust measurements as an indicator of AI is investigated through laboratory tests and using data from a pellet plant. Bentonite clay, polyacrylamide and pregelled cornstarch contents, and induration temperature were adjusted to control the abrasion resistance of laboratory iron ore pellets. AI were observed to range from approximately 1% to 12%. Size distributions of the abrasion progeny were measured and used to estimate quantities of PM10 (particulate matter with aerodynamic diameter less than 10 µm) produced during abrasion. A very good correlation between AI and PM10 (R2 = 0.90) was observed using the laboratory pellets. Similarly, a correlation was observed between AI and PM measured in the screening chimney at a straight-grate pelletization plant in Brazil, with an R2 value of 0.65. Thus, the laboratory and industry data suggest that measuring dust generation from fired pellets may be an effective on-line measurement of pellet quality. The data also showed that particulate emissions from pelletization plants may be directly affected by AI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号