首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Erythropoietin (EPO) could promote the angiogenesis and may also play a role in bone regeneration. This study was conducted to evaluate the osteogenesis and angiogenesis effects of EPO and the efficacy of deproteinized bovine bone/recombinant human EPO scaffold on bone defect repair. Twenty-four healthy adult goats were chosen to build goat defects model and randomly divided into four groups. The goats were treated with DBB/rhEPO scaffolds (group A), porous DBB scaffolds (group B), autogenous cancellous bone graft (group C), and nothing (group D). Animals were evaluated with radiological and histological methods at 4, 8 and 12 weeks after surgery. The grey value of radiographs was used to evaluate the healing of the defects and the outcome revealed that the group A had a better outcome of defect healing compared with group B (P < 0.05). However, the grey values in group A were lower than group C at week 4 and week 8 (P < 0.05), but at week 12 their difference had no statistical significance (P > 0.05). The newly formed bone area was calculated from histological sections and the results demonstrated that the amount of new bone in group A increased significantly compared with that in group B (P < 0.05) but was inferior to that in group C (P > 0.05) at 4, 8, 12 weeks respectively. In addition, the expression of vascular endothelial growth factor (VEGF) by immunohistochemical testing and real-time polymerase chain reaction at 12 weeks in group A was significantly higher than that in group B (P < 0.05), and also better than that in group C at week 4 and week 8 (P < 0.05), but at week 12 their difference had no statistical significance (P > 0.05). Therefore, EPO has significant effects on bone formation and angiogenesis, and has capacity to promote the repair of bone defects. It is worthy of being recommended to further studies.  相似文献   

2.
Mn x Hg1 ? xTe (x = 0.05, 0.12) single crystals were grown by solid-state recrystallization, and their axial and radial homogeneity was assessed by optical, electrical, and electron-microscopic measurements. The crystals are p-type, with a hole concentration of (4.3–5.3) × 1022 m?3 and Hall mobility in the range (410–570) × 10?4 m2/(V s).  相似文献   

3.
A novel CaO–2CuO–Nb2O5 (CCN) ceramic composite was prepared by the solid-state reaction method in the temperature range of 810–890 °C. Typically, the CCN sintered at 870 °C exhibited the excellent microwave properties of ε r ?=?15.7, Q?×?f?=?28,700 GHz, τ f = ? 38.4 ppm/°C. The τ f of CCN was turned to be near zero by adding TiO2, while the ε r increased slightly and the Q?×?f decreased. The 0.91CCN–0.09TiO2 ceramic sintered at 920 °C showed modified properties of ε r ?=?16.9, Q?×?f?=?21,500 GHz, τ f = ? 1.6 ppm/°C, which shows potential in LTCC applications.  相似文献   

4.
The gelatin–glutaraldehyde (gelatin–GA) nanofibers were electrospun in order to overcome the defects of ex-situ crosslinking process such as complex process, destruction of fiber morphology and decrease of porosity. The morphological structure, porosity, thermal property, moisture absorption and moisture retention performance, hydrolytic resistance, mechanical property and biocompatibility of nanofiber scaffolds were tested and characterized. The gelatin–GA nanofiber has nice uniform diameter and more than 80% porosity. The hydrolytic resistance and mechanical property of the gelatin–GA nanofiber scaffolds are greatly improved compared with that of gelatin nanofibers. The contact angle, moisture absorption, hydrolysis resistance, thermal resistance and mechanical property of gelatin–GA nanofiber scaffolds could be adjustable by varying the gelatin solution concentration and GA content. The gelatin–GA nanofibers had excellent properties, which are expected to be an ideal scaffold for biomedical and tissue engineering applications.  相似文献   

5.
The objectives of this study were to: (1) develop a new bioactive dental bonding agent with nanoparticles of amorphous calcium phosphate and dimethylaminohexadecyl methacrylate for tooth root caries restorations and endodontic applications, and (2) investigate biofilm inhibition by the bioactive bonding agent against eight species of periodontal and endodontic pathogens for the first time. Bonding agent was formulated with 5?% of dimethylaminohexadecyl methacrylate. Nanoparticles of amorphous calcium phosphate at 30?wt% was mixed into adhesive. Eight species of biofilms were grown on resins: Porphyromonas gingivalis, Prevotella intermedia, Prevotella nigrescens, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Parvimonas micra, Enterococcus faecalis, Enterococcus faecium. Colony-forming units, live/dead assay, biomass, metabolic activity and polysaccharide of biofilms were determined. The results showed that adding dimethylaminohexadecyl methacrylate and nanoparticles of amorphous calcium phosphate into bonding agent did not decrease dentin bond strength (P?>?0.1). Adding dimethylaminohexadecyl methacrylate reduced the colony-forming units of all eight species of biofilms by nearly three orders of magnitude. The killing efficacy of dimethylaminohexadecyl methacrylate resin was: P. gingivalis?>?A. actinomycetemcomitans?>?P. intermedia?>?P. nigrescens?>?F. nucleatum?>?P. micra?>?E. faecalis?>?E. faecium. Dimethylaminohexadecyl methacrylate resin had much less biomass, metabolic activity and polysaccharide of biofilms than those without dimethylaminohexadecyl methacrylate (P?<?0.05). In conclusion, a novel dental adhesive was developed for root caries and endodontic applications, showing potent inhibition of biofilms of eight species of periodontal and endodontic pathogens, and reducing colony-forming units by three orders of magnitude. The bioactive adhesive is promising for tooth root restorations to provide subgingival margins with anti-periodontal pathogen capabilities, and for endodontic sealer applications to combat endodontic biofilms.  相似文献   

6.
Micron-sized composition-controlled Fe100?x Co x (20 < x < 75) alloy particles with high purity have been prepared by an optimized reduction reaction. The influence of Co content on the alloying process, structures, and magnetic properties of the products has been studied. The as-synthesized Fe100 ?x Co x with x < 65 exhibit a single bcc crystal structure. A bcc-FeCo/fcc-Co composite structure can be formed in the Fe100?x Co x products with x > 65. Very slight surface oxidation is observed in all the products. The high purity and single bcc-FeCo phase for the well-alloyed Fe100 ?x Co x particles with x < 65 lead to their high saturation magnetization of 182–220 A m2 kg?1. All the well-alloyed Fe100 ?x Co x show nearly spherical morphologies with an average particle size of 2–8 μm, which results in their good compactibility with a high compacted density of about 7.4–7.6 g cm?3. The simple preparation and improved performances for these chemically synthesized composition-controlled FeCo particles show their great potential for applications in near-net-shaped and complex-shaped FeCo-based soft magnetic composite devices.  相似文献   

7.
In this study, three kinds of YBCO samples which are named Y1, Y2 and Y3 were fabricated by a melt–powder–melt–growth (MPMG) method. The Y1 sample was placed into a platinum (Pt) crucible without Y2O3, the Y2 sample was located on a Al2O3 crucible with a freely poured Y2O3 powder and the Y3 sample was located on a Al2O3 crucible with a 1-mm-thick buffer layer of Y2O3. YBCO samples were investigated by magnetoresistivity (ρT) measurements in dc magnetic fields (parallel to the c-axis) up to 5 T. The effect of the Y2O3 layer on the activation energy and irreversible flux of the samples was studied. The activation energies (U) were determined using the Arrhenius activation energy law from ρT. The power law relationship for U with H?α was investigated. α was calculated to find out which defects were dominant in the samples. Irreversibility fields (Hirr) and upper critical fields (Hc2) were obtained using 10 and 90% criteria of the normal-state resistivity value from ρT curves. Irreversibility lines (ILs) were estimated from the equation Hirr ~ (1 ? Tirr(H)/Tirr(0))n. The fitting results to giant flux creep and vortex glass models were discussed.  相似文献   

8.
xSr0.7Ce0.2TiO3–(1???x)Sr(Mg1/3Nb2/3)O3 ceramics, referred to xSCT–(1???x)SMN, were successfully produced by conventional solid-state sintered technology. The compounds, belonging to perovskites with a secondary phase of CeO2, can be detected even with x down to 0.1 of SCT composition. The overall trend for grain growth illustrates the increase with increasing SCT doping level. The Raman peak at 825 cm?1 splits into two peaks and causes red shift phenomenon. XPS spectra indicate that Ti and Nb ions exist respectively in tetravalence and pentavalence, and Ce ions exist in trivalence and tetravalence. Dielectrics constant (ε r ) of SCT–SMN ceramics gradually increases with increasing theoretical dielectric polarizabilities. A wider width of the 825 cm?1 for FWHM of A1g mode Raman peaks suggests to a lower Q?×?f value. The increasing tolerance factor in agreement with temperature coefficient of resonant frequency (τ f ), denotes that the rise of perovskite symmetry. The 0.1SCT–0.9SMN ceramic sintered at 1450?°C for 4 h illustrates excellent microwave dielectric properties with ε r ?~?35.4, Q?×?f?~?11282 GHz and τ f ?~?1.7 ppm/°C. Activation energies of 0.1SCT–0.9SMN ceramic at 100, 300 and 500 V, are ~0.436, 0.427 and 0.331 eV, respectively, indicative of a decreased trend with external electric field.  相似文献   

9.
The microwave dielectric properties of Ba2MgWO6 ceramics were investigated with a view to the use of such ceramics in mobile communication. Ba2MgWO6 ceramics were prepared using the conventional solid-state method with various sintering temperatures. Dielectric constants (? r ) of 16.8–18.2 and unloaded quality factor (Q u  × f) of 7000–118,200 GHz were obtained at sintering temperatures in the range 1450–1650 °C for 2 h. A maximum apparent density of 6.76 g/cm3 was obtained for Ba2MgWO6 ceramic, sintered at 1650 °C for 2 h. A dielectric constant (? r ) of 18.4, an unloaded quality factor (Q u  × f) of 118,200 GHz, and a temperature coefficient of resonant frequency (τ f ) of ?34 ppm/°C were obtained when Ba2MgWO6 ceramics were sintered at 1650 °C for 2 h.  相似文献   

10.
One of the significant uncertainties in Standard Platinum Resistance Thermometer (SPRT) calibration by fixed-points method is Type I non-uniqueness (sub-range inconsistencies). Sub-ranges water-tin (W 9 ) and water-indium (W 10 ) lies in the water-zinc (W 8 ) sub-range of the International Temperature Scale of 1990. Therefore, three sub-range inconsistencies [W 8 and W 9 (SRI 89 ), W 8 and W 10 (SRI 810 ), and W 9 and W 10 (SRI 910 )] occur. This paper investigated these inconsistencies using the calibration data of 12 SPRTs from six manufacturers. The result shows that the magnitude of the inconsistency for SRI 89 , SRI 810 , and SRI 910 are about 2.5, 2.2 and 1.8 mK, respectively.  相似文献   

11.
The flame retardancy of 2, 2-bis(4-glycidyloxyphenyl)propane (DGEBA)-aluminum diethylphosphinate (AlPi) nanocomposites (EP-AlPi/(P ? x), x = 1, 2, 3 %) was greatly enhanced by ultrasonic dispersion of nano-sized AlPi into epoxy resin. The UL 94 V-0 rating can be reached for EP-AlPi nanocomposites with a relatively low addition amount of AlPi (on the account of 8.4 wt% or phosphorus content of 2 wt%) as well as the LOI value over 37.2. The glass transition temperature (T g) enhanced properties were investigated by DTA, which showed that: T gs were about 5 °C higher than that of neat epoxy resin; T g increased along with content increasing of AlPi. Based on TGA results under a non-isothermal condition, the thermal degradation kinetics of EP-AlPi/(P ? x) composites were studied by Kissinger’s, Ozawa’s, Flynn–Wall–Ozawa’s and Coast-Redfern’s methods, which suggested the conversion function f (α) = 1/2α ?1 or f (α) = [?ln(1 ? α)]?1 for EP-AlPi/(P ? 1 %); f (α) = [?ln(1 ? α)]?1 for EP-AlPi/(P ? 2 %) and EP-AlPi/(P ? 3 %) during the investigated process. The epoxy resin nanocomposites obtained in this study are green functional polymers and will become flame retardant potential candidates in electronic fields such as printed wiring boards with high performance.  相似文献   

12.
57Fe Mössbauer spectrum of conductive barium iron vanadate glass with a composition of 20BaO·10Fe2O3·70V2O5 (in mol%) showed paramagnetic doublet peak due to distorted FeIIIO4 tetrahedra with isomer shift (δ) value of 0.37 (±?0.01) mm s?1. Mössbauer spectra of 20BaO·10Fe2O3·xMoO3·(70???x)V2O5 glasses (x?=?20–50) showed paramagnetic doublet peaks due to distorted FeIIIO6 octahedra with δ’s of 0.40–0.41 (±?0.01) mm s?1. These results evidently show a composition-dependent change of the 3D-skeleton structure from “vanadate glass” phase, composed of distorted VO4 tetrahedra and VO5 pyramids, to “molybdate glass” composed of distorted MoO6 octahedra. After isothermal annealing at 500 °C for 60 min, Mössbauer spectra also showed a marked decrease in the quadrupole splitting (Δ) of FeIII from 0.70 to 0.77 to 0.58–0.62 (±?0.02) mm s?1, which proved “structural relaxation” of distorted VO4 tetrahedra which were randomly connected to FeO4, VO5, MoO6, FeO6 and MoO4 units by sharing corner oxygen atoms or edges. DC-conductivity (σ) of barium iron vanadate glass (x?=?0) measured at room temperature was 3.2?×?10?6 S cm?1, which increased to 3.4?×?10?1 S cm?1 after the annealing at 500 °C for 60 min. The σ’s of as-cast molybdovanadate glasses with x’s of 20–50 were ca. 1.1?×?10?7 or 1.2?×?10?7S cm?1, which increased to 2.1?×?10?2 (x?=?20), 6.7?×?10?3 (x?=?35) and 1.9?×?10?4 S cm?1 (x?=?50) after the annealing at 500 °C for 60 min. It was concluded that the structural relaxation of distorted VO4 tetrahedra was directly related to the marked increase in the σ, as generally observed in several vanadate glasses.  相似文献   

13.
Some researchers formerly provided the mechanical, physical, and attenuation properties of the fabricated EremurusRhizophora spp. particleboard phantom. In this study, the percentage depth dose (PDD) and the half value layer (HVL) of fabricated EremurusRhizophora spp. particleboard phantom were determined and compared with those of Perspex and water phantoms, with the same standard phantom size (30 cm?×?30 cm?×?30 cm) in the diagnostic energy range using TLD 100H. In addition, the energy range of X-ray was in diagnostic range of energy. The results indicated that the PDD and HVL of the fabricated EremurusRhizophora spp. particleboard phantom were close to those of the Perspex phantom. Likewise, the PDD and HVL of the fabricated EremurusRhizophora spp. particleboard phantom were found in good agreement with those of water phantom. According to the results of this study, the fabricated EremurusRhizophora spp. particleboard phantom can be used as medical phantoms.  相似文献   

14.
Considerably improved flux pinning and critical current density Jc values have been achieved in Y-deficient Y-123 superconductors by directional solidification in air. In comparison with the regular Y-123 composition, Y-deficient one also has an orthorhombic structure and Y-123 main crystal phase remains in it. Whereas with the shortage of Y, Y1?xBa2Cu3O7?y can be regarded as (YBa2Cu3)1?xO7?t(Ba2Cu3) x Ot?y or (YBa2Cu3O7?z)(□ x YOz?y), so there may develop several kinds of microstructure defects as pinning sites in the system, such as highly dense, fine-scale, and faultlike defects, as well as localized superstructure, which are able to induce the increasing in flux pinning and Jc values in higher external magnetic fields. This kind of simple nonstoichiometric route could lead to a commercial technique for flux-pinning enhancement in Y-123 bulk materials.  相似文献   

15.
Laminar and large-eddy-simulation (LES) calculations with the dynamic Smagorinsky model evaluate the flow and force on an oscillating cylinder of diameter D = 2R in otherwise calm fluid, for β = D 2/νT in the range 197–61400 and Keulegan–Carpenter number K = U m T/D in the range 0.5–8 (ν kinematic viscosity, T oscillation period, U m maximal velocity). Calculations resolving the streakline patterns of the Honji instability exemplify the local flow structures in the cylinder boundary layer (β ~ 197–300, K ~ 2) but show that the drag and inertia force are not affected by the instability. The present force calculations conform with the classical Stokes–Wang solution for all cases below flow separation corresponding to K < 2 (with β < 61400). The LES calculations of flow separation and vortical flow resolve the flow physics containing a large range of motion scales; it is shown that the energy in the temporal turbulent fluctuations (in fixed points) are resolved. Accurate calculation of the flow separation occurring for K > 2 has strong implication for the force on the cylinder. Present calculations of the force coefficients for K up to 4 and β = 11240 are in agreement with experiments by Otter (Appl Ocean Res 12:153–155, 1990). Drag coeffients when flow separation occurs are smaller than found in U-tube experiments. Inertia coefficients show strong decline for large K (up to 8) and moderate β = 1035 but is close to unity for K = 4 and β = 11240. The finest grid has 2.2 × 106 cells, finest radial Δr/R = 0.0002, number of points along the cylinder circumference of 180, Δz/R = 0.044 and a time step of 0.0005T.  相似文献   

16.
Specific features of etching of GaN/AlGaN p–n structures in a KOH-based electrolyte have been studied. It was found that the corrosion process first passes across p layers through vertical channels associated with threading structural defects. Then, the corrosion process occurs in the lateral direction along n layers of the structure, with local hollows and voids thereby formed. The lateral etching is due to the presence of positive piezoelectric charges at boundaries of n-AlGaN and n-GaN layers and positively charged ionized donors in the space-charge region of the p–n junction.  相似文献   

17.
An attempt has been made to correlate the morphological and electrical properties of RF sputtered aluminum nitride (AlN), with target to substrate distance (D ts) in sputter chamber. AlN films, having thickness around 3,000 Å, were deposited on silicon substrates with different D ts values varying from 5 to 8 cm. XRD results indicated that the crystallinity of c-axis oriented films increase significantly with decrease in D ts and the FTIR absorption band of the films became prominent at shorter D ts. The surface roughness increased from 1.85 to 2.45 nm with that in D ts. A smooth surface with smaller grains was found at shorter D ts. The capacitance–voltage (C–V) measurements revealed that the insulator charge density (Q in) increased from 3.3 × 1011  to 7.3 × 1011 cm?2 and the interface state density (D it) from 1.5 × 1011  to 7.3 × 1011 eV?1cm?2 with the increase in D ts.  相似文献   

18.
The superconducting state in vanadium characterizes with the critical temperature (T c ) equal to 5.3 K. The Coulomb pseudopotential, calculated with the help of the Eliashberg equations, possesses anomalously high value μ ?(3Ωmax) = 0.259 or μ ?(10Ωmax) = 0.368 (Ωmax denotes the maximum phonon frequency). Despite the relatively large electron-phonon coupling constant (λ = 0.91), the quantities such as the order parameter (Δ), the specific heat (C), and the thermodynamic critical field (H c ) determine the values of the dimensionless ratios not deviating much from the predictions of the BCS theory: R Δ = 2Δ(0)/k B T c = 3.68, R C = ΔC(T c ) /C N (T c ) = 1.69, and \(R_{H}=T_{c}C^{N}\left (T_{c}\right )\slash {H^{2}_{c}}\left (0\right )=0.171\). This result is associated with the reduction of the strong-coupling and the retardation effects by the high value of the Coulomb pseudopotential. It has been shown that the results of the Eliashberg formalism can be relatively precisely reproduced with the help of the semi-analytical formulas, if the value of μ ? is determined on the basis of the T c -Allen-Dynes expression (μ A D? = 0.198). The attention should be paid to the fact that in the numerical and in the semi-analytical approach the comparable values of the thermodynamic parameters for the same μ ? have been obtained only in the vicinity of the point μ ? = 0.1.  相似文献   

19.
Order–disorder transitions in xR2O3 · (1 ? x)TiO2 (R = Sc, 0.4 ≤ x ≤ 0.5; R = Y, 0.5 ≤ x ≤ 0.6) solid solutions with highly imperfect fluorite-derived structures have been studied using monochromatic synchrotron X-ray diffraction and Raman spectroscopy. The results demonstrate that the synthesis process leads to the formation of a fluorite-like (Fm3m) disordered phase and a nanoscale (~10–100 nm) pyrochlore-like (Fd3m) ordered phase of the same composition, coherent with the disordered phase. We have determined their lattice parameters. The Raman spectra of Sc2TiO5 (Y2TiO5) contain broad lines in low- and high-frequency regions: at 190, 350, and 775 (134, 188, 365, 404, and 727) cm?1. These lines are characteristic of a pyrochlore-like phase with a varying degree of order and a disordered fluorite-like phase, respectively. The pyrochlore-like phase Y2Ti2O7 has two strong Raman peaks in the low-frequency region: at 312 and 527 cm?1. The formation of nanodomains with different degrees of order is caused by the internal stress that arises from the high density of structural defects in the unit cells of the solid solutions.  相似文献   

20.
Phase-pure bismuth tantalate fluorites were successfully prepared via conventional solid-state method at 900 °C in 24–48 h. The subsolidus solution was proposed with the general formula of Bi3+x Ta1?x O7?x (0 ≤ x ≤ 0.184), wherein the formation mechanism involved a one-to-one replacement of Ta5+ cation by Bi3+ cation within ~4.6 mol% difference. These samples crystallised in a cubic symmetry, space group Fm-3 m with lattice constants, a = b = c in the range 5.4477(± 0.0037)–5.4580(± 0.0039) Å. A slight increment in the unit cell was discernible with increasing Bi2O3 content, and this may attribute to the incorporation of relatively larger Bi3+ cation in the host structure. The linear correlation between lattice parameter and composition variable showed that the Vegard’s law was obeyed. Both TGA and DTA analyses showed Bi3+x Ta1?x O7?x samples to be thermally stable as neither phase transition nor weight loss was observed within ~28–1000 °C. The AC impedance study of Bi3TaO7 samples was performed over the frequency range 5–13 MHz. At intermediate temperatures, ~350–850 °C, Bi3+x Ta1?x O7?x solid solution was a modest oxide ion conductor with conductivity, ~10?6–10?3 S cm?1; the activation energy was in the range 0.98–1.08 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号