首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A combination of plasma-enhanced chemical vapor deposition and magnetron sputtering techniques has been employed to deposit chromium-doped diamond-like carbon (DLC) coatings on stainless steel, silicon and glass substrates. The concentrations of Cr in the coatings are varied by changing the parameters of the bipolar pulsed power supply and the argon/acetylene gas composition. The coatings have been studied for composition, morphology, surface nature, nanohardness, corrosion resistance and wear resistance properties. The changes in I D /I G ratio with Cr concentrations have been obtained from Raman spectroscopy studies. Ratio decreases with an increase in Cr concentration, and it has been found to increase at higher Cr concentration, indicating the disorder in the coating. Carbide is formed in Cr-doped DLC coatings as observed from XPS studies. There is a decrease in sp 3/sp 2 ratios with an increase in Cr concentration, and it increases again at higher Cr concentration. Nanohardness studies show no clear dependence of hardness on Cr concentration. DLC coatings with lower Cr contents have demonstrated better corrosion resistance with better passive behavior in 3.5% NaCl solution, and corrosion potential is observed to move toward nobler (more positive) values. A low coefficient of friction (0.15) at different loads is observed from reciprocating wear studies. Lower wear volume is found at all loads on the Cr-doped DLC coatings. Wear mechanism changes from abrasive wear on the substrate to adhesive wear on the coating.  相似文献   

2.
Diamond-like carbon (DLC) films with added silicon content from 0 to 19.2 at.% were deposited using r.f. PECVD (radio frequency plasma enhanced chemical vapor deposition). Fourier transform IR (FTIR) spectrometry, Raman spectrometry and X-ray photoelectron spectrometry (XPS) were used to determine the structural change of the annealed DLC films in ambient air. By increasing the annealing temperature the CHn and Si–H groups in the FTIR spectra decrease because of hydrogen evolution, whereas the intensities of CO and Si–O peaks increase owing to oxidation. From Raman spectra, the integrated intensity ratio ID/IG of the pure DLC films and the silicon-doped films increases at 300 and 400 °C, respectively, whereas the observable shoulder of the D band occurs at 400 and 500 °C, respectively, which indicates that the addition of silicon improves the thermal stability of DLC films. Using XPS analysis, a surface reaction for the annealed films is investigated.  相似文献   

3.
The main purpose of this work is to analyze the degradation mechanisms induced on industrial HVOF cermet coatings by tribocorrosion. Tribocorrosion of cermet coatings is a subject that has not been widely analyzed in research studies: in fact, while many works dealing with wear or corrosion of HVOF cermet coatings are published, studies relevant to the combined processes (wear and corrosion) are relatively few.The tribocorrosion mechanisms of the cermet coatings were studied in a sodium chloride solution under sliding wear, trying to combine and integrate differently produced mechanical and electrochemical damage phenomena.Electrochemical techniques such as potentiodynamic polarization curves as well as potentiostatic (I vs t) or galvanostatic (E vs t) methods were used in order to stimulate and to interprete tribocorrosion degradation mechanisms.It was shown that coating post grinding, which is a mechanical operation usually performed after the deposition of conventional cermet coatings in order to obtain a desired roughness, could produce structural damages, which can greatly affect the mechano-chemical behaviour of the cermet coatings.Mainly abrasive-adhesive wear mechanisms were observed on the coating surface and sometimes, depending on coatings mechanical properties (fracture toughness), cracks developed during wear causing the coating continuity breaking. In the latter case, the degradation mechanism is no longer governed only by surface tribocorrosion, but undermining corrosion can occur, greatly affecting sample performances and promoting coating detachment.Cr3C2-NiCr coatings, under all the selected experimental conditions, showed good barrier properties and substrate corrosion was never observed. Moreover, when chromium was added to the metal matrix of WC-Co based systems, tribocorrosion behaviour was enhanced and the lower tribocorrosion rates were measured.Finally, it was shown that electrochemical techniques can be used to govern the coating corrosion processes and to interpret the main degradation mechanisms, even though they seem not to provide a precise quantitative analysis of tribocorrosion.  相似文献   

4.
采用冷喷涂技术在镍铝青铜9442合金上制备了较为致密,厚度约300μm的镍铝青铜涂层,使用SEM、XRD、XPS、电化学工作站、磨蚀试验机观察并测试了镍铝青铜合金与涂层的组织形貌、电化学行为与磨蚀性能。结果表明:电化学腐蚀后基体发生了晶间腐蚀和选相腐蚀,涂层被腐蚀后颗粒上出现微孔和裂纹;磨蚀过程中存在着摩擦与钝化的协同作用以及摩擦促进阳极溶解的过程;相比于静态条件下,涂层与基体在磨蚀条件下测得的自腐蚀电位有大幅度下降,自腐蚀电流均提高了一个数量级,涂层与基体耐腐蚀性能变差;相比于干摩擦过程,磨蚀过程中涂层与基体的摩擦系数均有较大提高,减磨性能变差。  相似文献   

5.
Various grades of fuels are used in automobiles, as a result the engine components are continuously subjected to simultaneous action of corrosion and wear. Ni-SiC composite coating is the most widely investigated and commercialized wear-resistant coating in the automotive industry. However, this coating cannot be used at temperatures above 450 °C due to the tendency of SiC to react with Ni and form brittle silicides. An alternate approach is to use oxide-reinforced coatings. In the present study, zirconia, ZrO2 and, yttria-stabilized zirconia, YSZ-reinforced Ni composite coatings have been developed by electrodeposition method. It was observed from the microhardness studies that there is no significant difference in the values for Ni-SiC and Ni-ZrO2 coatings. The corrosion behavior was evaluated using polarization and electrochemical impedance studies. The studies showed that oxide particle-reinforced Ni coatings possessed better corrosion resistance due to their lower corrosion current density, I corr. Tribo-corrosion studies were carried out to understand the synergistic effect of wear and corrosion on the performance of Ni-based composite coatings in 0.5 M Na2SO4. Among various composite coatings, Ni-YSZ exhibited less material loss thereby showing better tribo-corrosion behavior.  相似文献   

6.
Thin films of Zirconium Nitride (ZrN) were deposited by DC magnetron sputtering. The structure of the films was examined by X-ray diffraction and the crystallographic parameters were refined by Rietveld analysis. The columnar micro-structure was observed via cross-sectional SEM analysis. Defect induced, first order spectra were observed from Laser Raman studies. XPS showed the presence of Zr (N,O) ZrO2 phases on the surface of the film. The pitting corrosion was substantially reduced by the employment of Zr film as an interlayer. Corrosion tests revealed that ZrN films with a Zr interlayer exhibited clear passivation characteristics with considerably better corrosion resistance than the film without an interlayer.  相似文献   

7.
Single-layer TiN, gradient TiN and multi-layer Ti/TiN coating were deposited on silicon and uranium substrates by means of arc ion plating technique. The main phase in the single-layer TiN coating was TiN with a (111) preferred orientation. Ti and TiN were observed in the TiN gradient coating and Ti/TiN multi-layer coatings. The single-layer TiN coating has demonstrated the best wear resistance among the three coatings. Compared with the bare U substrate, the corrosion potential Ecorr of the multi-layer Ti/TiN coatings is increased by 580 mV, and the corrosion current density Icorr is decreased at least by two orders of magnitude. The multi-layer Ti/TiN coatings possessed the highest corrosion resistance among the three coating in a 0.5 μg/g Cl solution.  相似文献   

8.
The characteristics and tribological performance of DLC and Si-DLC films with and without Si–C interlayers were studied in this paper. The films were deposited on nitrile rubber using a closed field unbalanced magnetron sputtering ion plating system. The film properties and characteristics were determined by scanning electron microscopy (SEM), hydrophobicity studies, Raman spectroscopy and tribological investigations. Tribological performance of these films was investigated using a pin-on-disc tribometer under applied loads of 1 N and 5 N under conditions of dry and wet sliding. The effect of immersing the films in water on tribological performance was also examined. The results show that the morphology of the films had a crack-like network. At a substrate bias of − 30 V, the coatings were characterised by a very dense non-columnar microstructure. The highest value of the ratio of intensities of the D and G peaks (ID/IG) was 1.2 for Si-DLC film with Si–C interlayer. The lowest value of 0.7 was observed for DLC film. The contact angle (CA) of water droplets showed that the films were hydrophobic. These results are interpreted in terms of hybridisation of carbon in these coatings. The tribological investigation showed a dependence on both the tribological condition under investigation and the atomic percentage of Si in the films. At 5 N normal load the lowest wear depth was observed for DLC films.  相似文献   

9.
In this study, the effects of a boronizing treatment on the corrosion and wear behaviors of AISI 316L austenitic stainless steel (AISI 316L) were examined. The corrosion behavior of the boronized samples was studied via electrochemical methods in a simulation body fluid (SBF) and the wear behavior was examined using the ball-on-disk wear method. It was observed that the boride layer that formed on the AISI 316L surface had a flat and smooth morphology. Furthermore, X-ray diffraction analyses show that the boride layer contained FeB, Fe2B, CrB, Cr2B, NiB, and Ni2B phases. Boride layer thickness increased with an increasing boronizing temperature and time. The boronizing treatment also increased the surface hardness of the AISI 316L. Although there was no positive effect of the coating on the corrosion resistance in the SBF medium. Furthermore, a decrease in the friction coefficient was recorded for the boronized AISI 316L. As the boronizing temperature increased, the wear rate decreased in both dry and wet mediums. As a result, the boronizing treatment contributed positively to the wear resistance by increasing the surface hardness and by decreasing the friction coefficient of the AISI 316L.  相似文献   

10.
The composition, nanostructure, tribological and corrosion behaviour of reactive arc evaporated CrBxNy coatings have been studied and compared to CrN. The CrBxNy coatings were deposited on a commercial Oerlikon Balzers RCS coating system employing 80:20 Cr:B targets. To vary the composition, the nitrogen fraction was adjusted (N2 fraction = N2/(Ar + N2)) and a moderate bias voltage of − 20 V was applied during coating growth. The coating composition and nanostructure was determined using time-of-flight elastic recoil detection analysis (TOF-ERDA), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS). Ball-on-disc dry sliding wear tests were conducted using an alumina ball counterface both at room temperature and at 500 °C with the relative humidity controlled at 20%. Potentiodynamic corrosion tests were undertaken in 3.5% NaCl aqueous solution. The wear tracks were examined using optical profilometry and scanning electron microscopy (SEM); the surface composition inside and outside of the wear tracks were investigated using Raman spectroscopy and XPS. All coatings exhibit nanocomposite structures and phase compositions which are in fair agreement with those expected from the equilibrium phase diagram. The lowest wear rate at room temperature and 500 °C was found for CrB0.14N1.14, which was shown to exhibit the highest hardness and possesses a nanocomposite nc-CrN/a-BN structure. CrB0.12N0.84 coatings showed the lowest passive current density in potentiodynamic corrosion tests.  相似文献   

11.
Zr-Nb-Cr alloys were used to evaluate the effects of alloying elements Nb and Cr on corrosion behavior of zirconium alloys. The microstructures of both Zr substrates and oxide films formed on zirconium alloys were characterized. Corrosion tests reveal that the corro- sion resistance of ZrxNb0.1Cr (x = 0.2, 0.5, 0.8, 1.1; wt%) alloys is first improved and then decreased with the increase of the Nb content. The best corrosion resistance can be obtained when the Nb concentration in the Zr matrix is nearly at the equilibrium solution, which is closely responsible for the formation of columnar oxide grains with protective characteristics. The Cr addition degrades the corrosion resistance of the Zrl.lNb alloy, which is ascribed to Zr(Cr,Fe,Nb)2 precipitates with a much larger size than β-Nb.  相似文献   

12.
Oxide films were formed on the biocompatible alloy Ti–13Nb–13Zr in a phosphate buffer at open-circuit potential (Eoc), potentiodynamically up to 8 V, or by micro-arc oxidation (MAO) at 300 V. Their electrochemical properties were assessed in a phosphate buffer saline solution (PBS). EIS and SEM results showed that the Eoc and potentiodynamically formed oxide films were compact and behave as a monolayer, while the MAO oxide was a bilayered film (compact inner and porous outer layers). Open-circuit potential and EIS resistance values indicated that the MAO oxide provides the best corrosion protection for the alloy in PBS.  相似文献   

13.
A series of graphitic a-C:H:Si films with different Si content were prepared by altering the sputtering current in a hybrid RF-PECVD and magnetron sputtering system. Microstructures and mechanical properties of them were characterized by IR, Raman, XPS, nanoindentation and scratch tests. Results show that although the sp3/sp2 ratio increases with increasing Si content and as high as 8.2 at.% of silicon was doped, the a-C:H:Si films remain graphitic in nature and the ID/IG ratio is nearly constant for all. The coupling effects of sputtering-induced heating and strong ion bombarding due to negatively biasing were considered to be responsible for the film graphitization. The graphitic nature also accounts for the lower nanohardness of prepared a-C:H:Si films than the diamond-like a-C:H and a-C:H:Si films.  相似文献   

14.
Li-Mg co-doped ZnO films have been deposited onto glass substrates by sol-gel spin coating method. The structural and morphological properties of the films were characterized by X-ray diffractometer (XRD), X-ray photo-electron spectroscopy (XPS) and field emission scanning electron microscopy (FESEM). The XRD spectra indicated that the films have polycrystalline nature. The crystallite size values decreased with the increasing Mg content. The chemical composition of the Li-Mg co-doped ZnO films were confirmed by XPS. Additionally, XPS results clearly showed the existence of Mg as a doping element into ZnO crystal lattice. The surface morphology of the films was found to depend on the concentration of Mg in the ZnO:Li. The absorption band edge values of the films were calculated and these values of the films increased with increasing Mg concentration. The refractive index dispersion curves of the films obeyed the single-oscillator model. The dispersion parameters such as Eo (single-oscillator energy) and Ed (dispersive energy) of the films were determined and increase with Mg content.  相似文献   

15.
FeCrBSiNbW coatings were synthesized using robotically manipulating twin wires arc spraying system. The microstructure and mechanical properties of the coating were characterized. The coating has a laminated structure, and its porosity is 2.8%. The microstructure of the coating consists of amorphous and α-(Fe,Cr) nanocrystalline. The nanocrystalline grains with a scale of 20-75 nm are homogenously dispersed in amorphous matrix. The results show that FeCrBSiNbW coating has excellent wear and corrosion resistance. The wear resistance of the coating is about 4.6 times higher than that of 3Cr13 coating under the same testing condition. In 3.5% NaCl aqueous solution, the amorphous/nanocrystalline coating presents lower I corr values in polarization curves and higher fitted R t values in EIS plots than that of the 0Cr18Ni9 coating (chemical composition by EDAX analysis: C1.07-O12.38-Si0.49-Cr15.18-Mn0.89-Ni7.09-Fe62.24 at.%).  相似文献   

16.
Transition metal oxynitrides have become emerging decorative coating materials due to their adjustable coloration and high hardness and corrosion resistance. This research studied the effect of oxygen content on the coloration, mechanical properties and corrosion resistance of ZrNxOy thin films deposited on AISI 304 stainless steel using hollow cathode discharge ion plating (HCD-IP). The Zr/N/O ratios of the ZrNxOy films were determined using X-ray photoelectron spectroscopy (XPS). The color of the ZrNxOy thin film changed from golden yellow to blue and then slate blue with increasing oxygen content. X-ray diffraction (XRD) patterns revealed that phase separation of ZrN and m-ZrO2 occurred as the oxygen content reached 31.2 at.%. ZrN(O) (ZrN with dissolving oxygen) is dominant at oxygen content less than 18.1 at.%, while m-ZrO2 phase was prevailed at oxygen content above 40.3 at.%. Phase separation lowered the hardness of the ZrNxOy films as the fraction of ZrO2 was less than 40%. The residual stresses in ZrN phase was higher than that in ZrO2, and the residual stress decreased for the specimen containing 30 to 37% ZrO2. For the samples containing more than 44% ZrO2, the average residual stress was close to that in ZrO2 phase. The corrosion resistance was evaluated by salt spray test and potentiodynamic scan in two solutions: 0.5MH2SO4 + 0.05 M KSCN and 5% NaCl solutions. The results showed consistent trend in the two solutions. From the results of potentiodynamic scan, corrosion resistance increased as the packing density of the film increased, whereas the film thickness was not a crucial factor on corrosion current; moreover, the electrical conductivity of the film may be one of the significant factors in corrosion resistance. Results of salt spray tests suggested that the corrosion of ZrNxOy in NaCl may play an important role in corrosion resistance.  相似文献   

17.
Biomedical implants in the knee and hip are frequent failures because of corrosion and stress on the joints. To solve this important problem, metal implants can be coated with diamond carbon, and this coating plays a critical role in providing an increased resistance to implants toward corrosion. In this study, we have employed diamond carbon coating over Ti-6Al-4V and Ti-13Nb-13Zr alloys using hot filament chemical vapor deposition method which is well-established coating process that significantly improves the resistance toward corrosion, wears and hardness. The diamond carbon-coated Ti-13Nb-13Zr alloy showed an increased microhardness in the range of 850 HV. Electrochemical impedance spectroscopy and polarization studies in SBF solution (simulated body fluid solution) were carried out to understand the in vitro behavior of uncoated as well as coated titanium alloys. The experimental results showed that the corrosion resistance of Ti-13Nb-13Zr alloy is relatively higher when compared with diamond carbon-coated Ti-6Al-4V alloys due to the presence of β phase in the Ti-13Nb-13Zr alloy. Electrochemical impedance results showed that the diamond carbon-coated alloys behave as an ideal capacitor in the body fluid solution. Moreover, the stability in mechanical properties during the corrosion process was maintained for diamond carbon-coated titanium alloys.  相似文献   

18.
电镀技术常用来对已破损的零件进行修复与再制造,然而其耐磨性及耐腐蚀性能需要进一步改善。在电镀技术的基础上向镀液中添加不同浓度的CeCl_(3)化合物(0、0.5、1、1.5 g/L)制备出复合镀层以探究其对电镀层性能的影响。结果表明:在镀液中添加CeCl_(3)化合物会使复合镀层中铁晶粒呈现较好的择优取向性;随着镀液中CeCl_(3)化合物浓度的逐渐提升,复合镀层的显微硬度、耐磨性、耐腐蚀性均呈现出先提高后减弱的状态;当镀液中CeCl_(3)化合物浓度为0.5g/L时,复合镀层的表面结构更为均匀、镀层中铁晶粒的排列更加致密,其显微硬度达到611.4HV,具有最佳的耐磨性和耐腐蚀性能。研究成果表明镀液中添加稀土CeCl_(3)化合物可以大幅度提高镀层的耐腐蚀性,并在一定程度上提高镀层的耐磨性,可为实际生产中提高镀铁层的耐磨性及耐腐蚀性能提供理论指导。  相似文献   

19.
The cobalt–chromium (CoCr) alloys have been extensively used as implants, especially in total joint replacements and in odontology, due to their superior mechanical properties and wear resistance in vivo. However, the excessive release of the ‘Co’ and ‘Cr’ ions from CoCr implants can lead to adverse health issues, such as hypersensitivity and inflammatory reactions. The present study aimed to improve the corrosion resistance of a medical grade CoCr alloy (ASTM F-1537) plasma-sprayed with tantalum (Ta)-reinforced hydroxyapatite (HA) coating. The weight percent (wt.%) of Ta content in HA coating was varied at three levels, i.e., 10, 20, and 30%. In vitro corrosion behavior was investigated by electrochemical measurements in Ringer’s solution along with surface properties analysis. The results revealed an increase in surface hardness value with an incremental increase in Ta content in the HA coating. The surface of HA as well as Ta-reinforced HA coatings possessed adequate roughness and demonstrated hydrophilic nature. With the Ta reinforcement in HA coating, the Ecorr values shifted toward nobler potentials and Icorr values declined noticeably which indicated an increase in corrosion resistance of the surface. The results of the study indicate that the proposed Ta reinforcement in HA is potentially important for CoCr bio-implant applications.  相似文献   

20.
A new Ce, Zr and Nb-based conversion coating was designed for AZ91 and AM50 magnesium alloys. The corrosion protection provided by this coating was evaluated by electrochemical measurements (polarization curves, electrochemical impedance spectroscopy) in Na2SO4 electrolyte, and accelerated atmospheric corrosion tests (humid, SO2 polluted air, and salt spray). Its chemical composition was characterized by X-ray photoelectron spectroscopy (XPS). Electrochemical measurements showed that Mg alloys treated during 24 h in the Ce-Zr-Nb conversion bath exhibit: (i) increased corrosion potential, (ii) decreased corrosion and anodic dissolution current densities, and (iii) increased polarization and charge transfer resistances. The accelerated corrosion tests revealed excellent atmospheric corrosion resistance for all Ce-Zr-Nb-treated samples, with or without an additional layer of epoxy-polyamide resin lacquer or paint. XPS analysis showed that the coating includes CeO2, Ce2O3, ZrO2, Nb2O5, MgO, and MgF2 as main components. No significant modification of the chemical composition was observed after cathodic and anodic polarization in Na2SO4. This new coating provides improved corrosion resistance, and excellent paint adhesion. It offers an alternative to the chromate conversion coating for magnesium alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号