首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
基于Autoform的汽车左右护板的冲压成形有限元分析   总被引:1,自引:1,他引:0  
介绍了汽车覆盖件冲压成形仿真的研究背景,论述了板料冲压成形有限元模拟的理论和主要步骤。采用Autoform软件对汽车左、右护板零件进行了冲压成形过程的有限元分析,完成了左右对称零件在Autoform软件中的模拟参数优化,预测了板料成形过程中减薄、拉裂、起皱等缺陷,同时分析缺陷产生的原因;通过调整拉深筋参数与压边力大小,对成形结果进行优化,证明了有限元模拟分析设计方法具有实用性。  相似文献   

2.
以铝合金汽车发动机罩内板为对象,在初始型面结构的基础上,结合有限元分析,针对其出现的成形缺陷进行多轮优化,改善其成形性能,同时探究了压边力和模具间隙等工艺参数对零件减薄率和回弹的影响。结果表明,在较小的压边力和较大的模具间隙下板料的减薄较小;在一定范围内,随着压边力的增大,零件的整体回弹得到抑制但变化不明显,而局部的负向回弹有所增加,模具间隙的减小也有利于减小回弹。在优化型面结构的基础上对其进行回弹补偿并配合工艺参数的调整,可有效减小零件的回弹。在仿真优化结果的基础上进行铝合金发动机罩内板的冲压试验,试验件与仿真优化结果具有较好的一致性。  相似文献   

3.
为了解决高强度钢作为汽车零件材料在冲压成形过程中存在的成形缺陷,以某品牌汽车座椅的调角器边板为例,针对其几何结构和对称件的特征进行了冲压工艺流程设计及优化、零件成形精度优化。首先,确定零件的冲压工序,根据其结构特点将冲孔工序的工作内容与其他工序合并,合理减少总工序数,并一次对两个零件同时进行冲压,优化后的冲压工艺流程为:落料、拉深、修边、翻边。然后,通过调整压边力、摩擦因数和拉深模具间隙3个工艺参数对零件的成形精度进行优化,降低其回弹量,使零件满足实际尺寸精度要求,优化后的工艺参数组合为压边力为33 kN、摩擦因数为0.13、拉深模具间隙为2.70 mm,仿真结果中零件的最大回弹量为1.264 mm。最后,进行样件试冲,零件实际的最大回弹量为1.270 mm,与仿真结果基本一致,验证了仿真结果的有效性。  相似文献   

4.
针对汽车铝板顶盖在冲压成形过程中容易出现回弹等问题,以某车型汽车铝板顶盖为例,采用Autoform软件对其冲压成形过程进行了仿真模拟,对比了采用不同拉深工艺零件成形结果。通过优化零件天窗区域的翻边工艺,零件成形回弹得到了控制。  相似文献   

5.
针对铝合金复杂件冲压后出现的较大回弹缺陷,同时为减少冲压成形工艺参数的优化时间,使用有限元仿真软件DYNAFORM对冲压成形及回弹过程进行数值模拟,在确保数值模拟与试验结果基本一致的基础上,利用代理模型对回弹进行了优化研究。以NUMISHEET'96 S梁为研究对象,凸模圆角半径、凹模圆角半径、压边力、板料厚度作为影响因素,成形后最大回弹值作为成形目标,运用拉丁超立方抽样,通过数值仿真获得样本数据,建立影响因素与成形目标之间的小波神经网络代理模型,利用粒子群算法对该模型迭代寻优获得最优工艺参数。结果表明:小波神经网络能较好地描述板料工艺参数与回弹之间的映射关系,优化后成形件的回弹量大大减小。  相似文献   

6.
地板通道零件是乘用车车身骨架中形面复杂的代表性零件,零件冲压成形过程中极易产生回弹与起皱从而影响到零件质量。应用CAE分析软件-Autoform对地板通道零件的板料冲压成形过程中回弹与起皱特性进行分析,得到了最佳的冲压力、冲压速度、压边力及回弹补偿等参数,确定最优工艺参数为:冲压速度5000 mm·s-1,压边力1200 k N、模具拉延筋向外移动4 mm。采用最优工艺参数进行成形工艺试验,试验结果表明,成形零件回弹变形量可以控制在-0.626~0.937 mm之间,同时解决了零件起皱缺陷,获得了质量合格的地板通道零件。  相似文献   

7.
针对微波炉外壳冲压时易破裂和回弹的缺点,利用有限元建立了壳体模型及Dynaform软件对冲压过程中板料流动进行了数值仿真,分析并优化了成形工艺参数,在此基础上设计了模具。试模结果表明,工艺参数设置合理,仿真分析结果与实际冲压结果吻合,生产的零件满足了客户使用要求。  相似文献   

8.
板材在冲压成形过程中,复杂结构零件会产生很多缺陷,如起皱,拉裂及卸载后工件的回弹,严重影响了冲压件的成形精度。采用数值模拟与正交试验相结合的优化分析方法,研究了S梁覆盖件冲压成形工艺的优化。依据正交试验方案,以凹模圆角半径、冲压速度、摩擦系数、压边力为研究因子,最大减薄率、最大增厚率为评价指标,采用有限元软件Dynaform进行冲压成形模拟。最终得到了最优的凹模圆角半径、冲压速度、摩擦系数、压边力等工艺参数组合。  相似文献   

9.
基于正交试验的多曲率件弯曲回弹影响因素研究   总被引:4,自引:3,他引:1  
针对多曲率件弯曲成形中回弹问题,采用正交试验的方法,对二维多曲率件冲压成形过程中各工艺参数的影响情况进行试验研究,以最少的试验次数,得到影响零件回弹因素的主次顺序,并得出最佳工艺参数组合,为确定多曲率件冲压成形工艺参数提供了合理的依据,为后续三维多曲率件冲压成形及回弹的控制奠定基础。  相似文献   

10.
以液力变矩器中的涡轮壳零件作为分析对象,利用Simufact Forming软件建立涡轮壳成形的有限元模型,仿真了两种不同的涡轮壳成形方案,通过仿真结果可以得知,采用压边圈的方案可以使冲压成形力降低27.1%,并且采用630 t机床可以满足零件的冲压。借助Simufact Forming软件对涡轮壳的成形进行回弹分析,研究了冲压工艺参数对涡轮壳成形回弹的影响变化趋势,研究表明,涡轮壳的回弹量随着模具间隙的增大而增加,而随着冲压速度的增大则减小。此外,基于有限元模拟的结果设计了涡轮壳的成形模具,并进行试验验证,通过测量得知涡轮壳的最大回弹量为0.442 mm,回弹量的最大模拟值为0.37 mm,两者之间的相对误差为16.3%,其可以满足样件制造的要求,从而为涡轮壳成形模具的设计提供重要的参考。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

18.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

19.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

20.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号