首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
将负载敏感技术与负载口独立控制技术结合起来,以负载口独立控制技术原理为基础,利用负载敏感技术的机液压差补偿方法,以电液比例插装阀为基本控制单元,设计了基于机液压差补偿的负载口独立控制系统,对其阀口节流损失特性进行分析,提出基于进、出油口开口度独立调节的节能控制方法,并与负载敏感系统的节能特性进行对比。分析结果表明:基于机液压差补偿的负载口独立控制系统的节能特性优于负载敏感系统,并且随着执行器两腔面积比的减小,节能效果越明显。  相似文献   

2.
电液比例系统的位置控制是控制领域的一个重要组成部分,传统控制方法以PLC为控制主体,但PLC内存和计算能力有限。为此,基于虚拟仪器开发了集采集、控制为一体的电液比例位置控制系统。该系统以Lab VIEW为软件开发平台,结合位移传感器、USB6008数据采集卡、比例放大器、电液比例流量阀、三位四通电磁换向阀构成液压系统,进而驱动液压缸以实现对电液比例系统的位置控制。该系统硬件仅作为输入输出且通用性好,同时,可以利用计算机强大的储存能力和计算能力对数据进行存储和分析。实验结果表明:该方法切实可行,能够准确完成系统的位置控制。  相似文献   

3.
针对抗流量饱和研究中传统负载敏感系统节流损失大、电液压差补偿控制难度高的问题,将负载口独立控制技术应用于负载敏感系统,设计一种新型抗流量饱和的负载口独立系统。建立该系统节能特性模型,并与传统负载敏感系统的节能特性进行对比。结果表明:该系统的效率优于传统负载敏感系统,当液压缸处于阻抗缩回工况时,该系统节能效果更明显,节能效率为15.97%。  相似文献   

4.
针对传统挖掘机动臂液压系统能耗大、势能利用低等问题,以挖掘机动臂为研究对象,设计基于负载口独立控制的动臂液压系统。在主动型负载工况缩回工况下,对动臂液压系统进行了压力-流量特性分析,获得阀口开度与活塞杆速度的关系;采用机械动力学仿真软件ADAMS和液压系统仿真软件AMESim,分别建立传统动臂液压系统和基于负载口独立控制的动臂液压系统联合仿真模型,并对2种动臂液压系统在主动型负载工况缩回工况进行联合仿真分析。仿真结果表明:2种动臂液压系统都能获得较为线性的活塞杆运动速度,而且与传统动臂液压系统相比,基于负载口独立控制的动臂液压系统的势能利用率明显提高,提高了约44.3%。  相似文献   

5.
电液比例位置系统是一种典型的非线性时变系统,其参数具有非线性特性,常用的线性化模型基础上的经典控制器,难以取得满意的控制效果.笔者将模糊控制器应用于电液比例位置系统,并采用FPGA芯片,通过VHDL语言设计实现了一个二输入一输出模糊控制器.实验结果表明,控制器推理结果正确,能够稳定、可靠地工作.  相似文献   

6.
针对阀控电液负载模拟系统中存在的能耗高、非线性摩擦和舵机运动干扰等问题,提出双泵控制电液负载模拟系统的方案,并且采用滑模控制以保证系统的鲁棒性。建立双泵分腔调控电液负载模拟系统的数学模型;在此基础上,针对单泵控系统动态特性差的问题,设计力-总压力复合控制策略,使其具有和阀控系统相似的动态特性;对于传统的滑模控制造成系统抖振而引起系统的跟踪效果不好的问题,提出一种基于模糊趋近律的等效滑模控制器,并对其稳定性进行了理论分析。最后,经过联合仿真,验证了所设计的控制策略和控制器具有可行性和有效性。结果表明:所提出的复合滑模控制电液负载模拟系统具有良好的跟踪效果,且能够显著地降低系统能耗。  相似文献   

7.
22 MN快锻液压机液压控制系统   总被引:1,自引:1,他引:0  
22 MN快锻液压机液压控制系统利用当前先进的电液比例技术和电控技术,结合液压机工作特性,实现位移正弦控制,且运行快速平稳、无冲击振动。针对该系统高功耗问题,对液压系统进行优化设计,达到了节能的目的。并基于快锻压机工艺对该机的电控系统进行了设计,该系统功能强大,易于操作。  相似文献   

8.
电液比例控制系统在快锻液压机中的应用日益广泛.提出采用三通插装阀的新型电液比例控制系统的方案,建立其数学模型和仿真模型并与单独设置高压卸荷阀的控制系统进行对比.结果表明:系统用三通比例插装阀控制,无需单独设置高压卸荷阀,控制性能更好,并用蓄能器作辅助动力源,起到节约制造成本和节能的效果.  相似文献   

9.
针对空间对接半物理仿真系统电液伺服作动器设计问题进行研究,建立了接触碰撞半物理仿真试验系统.从分析空间对接半物理仿真系统建构问题和对接机构的特性入手,提出了运动模拟器电液伺服作动器的设计要求.通过对电液伺服作动器动力机构数学模型展开分析,提出减小电液伺服作动器动态特性相对负载刚度变化的灵敏度的设计方法,并进行了实验验证.  相似文献   

10.
道路模拟试验台电液伺服系统仿真研究   总被引:1,自引:0,他引:1  
电液伺服道路模拟试验台是汽车整车和结构件疲劳耐久性开发验证的重要手段之一。综合分析了道路模拟试验台电液位置伺服系统组成和原理,建立了阀控对称液压缸、电液伺服阀和伺服放大器等关键环节及整个系统的数学模型。利用AMESim软件建立了电液位置伺服系统仿真模型,并采用典型信号对系统进行仿真分析,结合美国MTS电液伺服道路模拟试验系统进行仿真验证。在验证后的高精度模型基础上,对电液位置伺服系统的阶跃响应特性、频率响应特性、负载刚度特性及其影响因素进行了详细分析,为电液伺服控制系统开发以及提高系统响应性能提供了参考。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

18.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

19.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

20.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号