首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The Sn-20In-2.8Ag solder alloy is a potential lead-free solder for replacing the traditional Sn-Pb solders. In this study, the mechanical properties of the bulk material are reported by tensile test at various strain rates and temperatures. The Sn-20In-2.8Ag solder possessed a solidus and liquidus between 170.8°C and 195.5°C. The ultimate tensile strength (UTS) and elongation were 59.3 MPa and 50.2% at a strain rate of 10−3 s−1 at room temperature. Moreover, the UTS of this alloy decreased, but its elongation increased, with increasing testing temperature. Stress exponents of Sn-20In-2.8Ag alloy varied from 6.5 at room temperature to 4 at 100°C, and the activation energy for creep was 51.0 kJ/mol at the higher temperature range from 50°C to 100°C. The typical intergranular creep fracture mode was observed in Sn-20In-2.8Ag solder during tensile creep deformation.  相似文献   

2.
The paper presents a hybrid experimental and analytical approach to track the deformation of solder joints in an electronic package subject to a thermal process. The solder joint strain is directly measured using a computer vision technique. The strain measurement is analyzed following an approach that is devised based on an established solder constitutive relation. The analysis leads to the determination of the solder joint stress and in turn, to the separation of the elastic, plastic and creep strain from the measured total strain. The creep strain rate and stress–strain hysteresis loop are also obtained. Two case studies are presented to illustrate the applications and to show the viability of the approach. Each case involves a resistor package with SAC (Sn95.5Ag3.8Cu0.7) solder joints, which is subjected to a temperature variation between ambient and 120 °C. The results confirm that shear is a dominant strain component in such solder joints. The shear strain varies nearly in phase with the temperature whereas the shear stress exhibits a different trend of variation due to stress relaxation. The peak shear stress of around 10 MPa to 15 MPa are found, which occur at near 70 °C in both cases, when the temperature ramps up at approximately 3 °C/min. The creep shear strain goes up to 0.02 and accounts for over 80% of the total shear strain. The creep strain rate is in the order of magnitude of 10−5 s−1. Responding to the temperature cycling with such moderate rate, the creep strain shows modest ratcheting while the stress–strain hysteresis stabilizes in two cycles.  相似文献   

3.
Nano-sized, nonreacting, noncoarsening oxide dispersoids have been incorporated into solder alloys to create a new, improved solder structure with an ultrafine grain size of ∼200–500 nm. The new solders exhibit significantly enhanced creep resistance combined with increased strength. The well-known thermal instability problem with ultrafine-grained structure appears to have been overcome in these solder alloys and the microstructure was seen to be quite stable upon high temperature exposure (e.g. 120°C). This is attributed to the presence of very fine dispersoid particles which impede grain boundary sliding and dislocation movement. The dispersions are seen to have a profound effect on the mechanical deformation characteristics of the solders with respect to creep. As much as three orders of magnitude reduction in the steady state creep rate has been achieved. The new solders also exhibit improved ductility under high strain rate deformation and improved strength (4–5 times higher tensile strength) at low strain rates. It is demonstrated that with a dispersion of TiO2 particles, the Pb-Sn eutectic solder with a melting point of 183°C can be made more creep-resistant than the 80Au-20Sn eutectic solder with a much higher melting point of 278°C. The new creep-resistant solders can be useful for optical and optoelectronic packaging in which dimensional stability of the assembled structure is essential.  相似文献   

4.
It has been conventional to simplify the thermo-mechanical modeling of solder joints by omitting the primary (transient) contributions to total creep deformation, assuming that secondary (steady-state) creep strain is dominant and primary creep is negligible. The error associated with this assumption has been difficult to assess because it depends on the properties of the solder joint and the temperature–time profile. This paper examines the relative contributions of plasticity, primary and secondary creep in Sn40Pb and Sn3.8Ag0.7Cu solders using the analysis of a trilayer solder joint structure with finite elements and a newly developed finite difference technique. The influences of temperature amplitude and ramp rate have been quantified. It was found that for the thermal profiles considered, the role of plasticity was negligible for trilayer assemblies with SnPb and SnAgCu solder interlayers. Furthermore, when primary creep was included for SnAgCu, the temperature-dependent yield strength was not exceeded and no plastic strains resulted. Neglect of primary creep can result in errors in the predicted stress and strain of the solder joint. Damage metrics based on the stabilized stress vs. strain hysteresis loop, for symmetric 5 min upper/lower dwell periods, differ widely when primary creep is considered compared to the secondary-only creep model. Creep strain energy density differences between the secondary-only and primary plus secondary creep models for SnPb were 32% (95 °C/min–Δ165 °C thermal profile), 32% (95 °C/min–Δ100 °C) and 35% (14 °C/min–Δ100 °C); similarly for SnAgCu, the differences were 29% (95 °C/min–Δ165 °C), 46% (95 °C/min–Δ100 °C) and 58% (14 °C/min–Δ100 °C). Accumulated creep strain differences between the secondary-only and primary plus secondary creep models for SnPb were 21% (95 °C/min–Δ165 °C), 25% (95 °C/min–Δ100 °C) and 25% (14 °C/min–Δ100 °C); similarly for SnAgCu the differences were 82% (14 °C/min–Δ100 °C), 89% (95 °C/min–Δ100 °C) and 100% (95 °C/min–Δ165 °C). In turn, these discrepancies can lead to errors in the estimation of the solder thermal fatigue life due to the changing proportion of primary creep strain to total inelastic strain under different thermal profiles, particularly for SnAgCu.  相似文献   

5.
The reliability concern in flip-chip-on-board (FCOB) technology is the high thermal mismatch deformation between the silicon die and the printed circuit board that results in large solder joint stresses and strains causing fatigue failure. Accelerated thermal cycling (ATC) test is one of the reliability tests performed to evaluate the fatigue strength of the solder interconnects. Finite element analysis (FEA) was employed to simulate thermal cycling loading for solder joint reliability in electronic assemblies. This study investigates different methods of implementing thermal cycling analysis, namely using the "dwell creep" and "full creep" methods based on a phenomenological approach to modeling time independent plastic and time dependent creep deformations. There are significant differences between the "dwell creep" and "full creep" analysis results for the flip chip solder joint strain responses and the predicted fatigue life. Comparison was made with a rate dependent viscoplastic analysis approach. Investigations on thermal cycling analysis of the temperature range, (ΔT) effects on the predicted fatigue lives of solder joints are reported  相似文献   

6.
The partitioned viscoplastic-constitutive properties of the Sn3.9Ag0.6Cu Pb-free alloy are presented and compared with baseline data from the eutectic Sn63Pb37 solder. Steady-state creep models are obtained from creep and monotonic tests at three different temperatures for both solders. Based on steady-state creep results and creep-test data, a transient creep model is developed for both Pb-free and Sb37Pb solders. A one-dimensional (1-D), incremental analytic model of the test setup is developed to simulate constant-load creep and monotonic and isothermal cyclic-mechanical tests performed over various temperatures and strain rates and stresses using a thermome-chanical-microscale (TMM) test system developed by the authors. By fitting simulation results to monotonic testing data, plastic models are also achieved. The comparison between the two solders shows that Sn3.9Ag0.6Cu has much better creep resistance than Sn37Pb at low and medium stresses. The obtained, partitioned viscoplastic-constitutive properties of the Sn3.9Ag0.6Cu Pb-free alloy can be used in commercial finite-element model software.  相似文献   

7.
The Bi-43%Sn eutectic solder alloy is a candidate for lead-free replacement of the widely used Pb-Sn solders. The alloy exhibits a microstructural instability at elevated service temperatures causing extensive coarsening and nonuniformity in microstructure and severe creep deformation. The addition of insoluble dispersoid particles using a novel magnetic distribution technique has been found to significantly reduce the coarsening and the onset of tertiary creep. With improved microstuctural stability, the useful service range of the Bi-Sn eutectic solder can be raised to a higher homologous temperature.  相似文献   

8.
The mechanical shear fatigue test has been performed to study the effect of silver content on the fatigue properties of Sn-xAg-0.5Cu (x=1, 2, 3, and 4) for flip-chip interconnections. The strength of the solder alloy increases with increasing silver content, preventing shear plastic deformation of the solder bump. The flip-chip joints made using higher silver content solder, such as 3%Ag and 4%Ag, exhibit longer fatigue life for all conditions. The fatigue ductility of the solder decreases with an increase in the silver content. The fatigue endurance of 1%Ag solder is superior to other solders over the plastic strain range of 3%, even though the strength of the solder is the lowest in the solders tested. Based on this study, the 3Ag solder may exhibit good fatigue performance for all conditions, and the 1Ag solder is optimum for severe strain conditions.  相似文献   

9.
This paper reports the results of a study on the effect of the cooling rate during solidification on the shear creep and low cycle shear fatigue behavior of 60 Sn/40 Pb solder joints, and on bulk solder tensile properties. Solder joints were made with three different initial microstructures by quenching, air-cooling and furnace-cooling. They have similar steady-state strain rates under creep at relatively high shear stresses (i.e. in the matrix creep region) but creep at quite different strain rates at lower shear stresses (i.e. in the grain boundary creep region). These results are ascribed to the refined grain size and less lamellar phase morphology that results on increasing the cooling rate. Tensile tests on bulk solders that were cold-worked, quenched and furnace-cooled show that a faster cooling rate decreases the ultimate strength and increases the ductility at low strain rates. The fatigue life of quenched solder joints is shown to be longer than that of the furnace-cooled joints.  相似文献   

10.
A method to separate plasticity and creep is discussed for a quantitative evaluation of the plastic, transient creep, and steady-state creep deformations of solder alloys. The method of separation employs an elasto-plastic-creep constitutive model comprised of the sum of the plastic, transient creep, and steady-state creep deformations. The plastic deformation is expressed by the Ramberg-Osgood law, the steady-state creep deformation by Garofalo’s creep law, and the transient creep deformation by a model proposed here. A method to estimate the material constants in the elasto-plastic-creep constitutive model is also proposed. The method of separation of the various deformations is applied to the deformation of the lead-free solder alloy Sn/3Ag/0.5Cu and the lead-containing solder alloy Sn/37Pb to compare the differences in the plastic, transient creep, and steady-state creep deformations. The method of separation provides a powerful tool to select the optimum lead-free solder alloys for solder joints of electronic devices.  相似文献   

11.
Fatigue and cyclic delamination behavior of PbSnAg solders which are typically used as die attach material in power semiconductors was investigated. Isothermal bending fatigue tests were performed by using multilayered model test structures consisting of Si chips soldered on ceramic substrates and failure probability curves were obtained up to 1e8 loading cycles. The fatigue experiments were conducted by using an ultrasonic fatigue testing machine equipped with a three point bending set-up at a constant testing temperature of 80 °C. Detailed failure analysis of the fatigued samples revealed a dependency of the failure mode on the chemical composition of the high-Pb soft solders. The main failure modes included interfacial delamination of the Si-chip from the die attach, degradation due to crack propagation in the solder layer and in some cases partial fracture of the chip. Finally the feasibility of high frequency mechanical fatigue testing for screening and evaluation of solder joints in multilayered electronic systems is discussed.  相似文献   

12.
13.
The microstructure property relations of several Pb-free solders are investigated to understand the microstructural changes during thermal and mechanical processes of Pb-free solders. The Pb-free solder alloys investigated include pure Sn, Sn-0.7% Cu, Sn-3.5% Ag, and Sn-3.8% Ag-0.7% Cu (in weight percent). To reproduce a typical microstructure observed in solder joints, the cooling rate, ingot size, and reflow conditions of cast alloys were carefully controlled. The cast-alloy pellets are subjected to compressive deformation up to 50% and annealing at 150°C for 48 h. The microstructure of Pb-free solders is evaluated as a function of alloy composition, plastic deformation, and annealing. The changes in mechanical property are measured by a microhardness test. The work hardening in Sn-based alloys is found to increase as the amount of alloying elements and/or deformation increases. The changes in microhardness upon deformation and annealing are correlated with the microstructural changes, such as recrystallization or grain growth, in Pb-free solder alloys.  相似文献   

14.
Reliability of high temperature solder alternatives   总被引:3,自引:0,他引:3  
European RoHS directives, enacted in response to concerns about the toxicity of lead, are driving the substitution of Pb-free solders for Pb-containing solders at the component to board level. While European RoHS regulations currently exempt high Pb solders used as component solders and die attaches for automotive and other high temperature applications, there is a strong drive to find Pb-free alternatives for these high temperature electronic applications, as well. This paper presents constitutive and reliability information on one of the widely used high lead solder materials as a baseline, and discusses potential alternative technologies for high temperature solders with the goal of identifying a cost-effective lead-free solder that can be used at temperatures greater than 200 °C.  相似文献   

15.
The creep behaviour of Sn96.5Ag3.5- and Sn95.5Ag3.8Cu0.7-solder was studied specifically for its dependence on technological and environmental factors. The technological factors considered were typical cooling rates and pad metallizations for solder joints in electronic packaging. The environmental factors included microstructural changes as a result of thermal aging of solder joints. Creep experiments were conducted on three types of specimens—flip–chip joints, PCB solder joints and bulk specimens. flip–chip specimens were altered through the selection of various under bump metallizations (Cu vs. NiAu), cooling rates (40 K/min vs. 120 K/min), and thermal storage (24 h, 168 h, and 1176 h at 125 °C). PCB solder joints were studied by using a copper pin soldered into a thru-hole connection on a printed circuit board having a NiAu metallization. Bulk specimens contained the pure alloys. The creep behaviour of the SnAg and SnAgCu solders varied in dependence of specimen type, pad metallization and aging condition. Constitutive models for SnAg and SnAgCu solders as they depend on the reviewed factors are provided.  相似文献   

16.
A three-dimensional (3-D) nonlinear finite element model of an overmolded chip scale package (CSP) on flex-tape carrier has been developed by using ANSYSTM finite element simulation code. The model has been used to optimize the package for robust design and to determine design rules to keep package warpage within acceptable Joint Electron Device Engineering Council (JEDEC) limits. An L18 Taguchi matrix has been developed to investigate the effect of die thickness and die size, mold compound material and thickness, flex-tape thickness, die attach epoxy and copper trace thicknesses, and solder bail collapsed stand-off height on the reliability of the package during temperature cycling. For package failures, simulations performed represent temperature cycling 125°C to -40°C. This condition is approximated by cooling the package which is mounted on a multilayer printed circuit board (PCB) from 125°C to -40°C. For solder ball coplanarity analysis, simulations have been performed without the PCB and the lowest temperature of the cycle is changed to 25°C. Predicted results indicate that for an optimum design, that is low stress in the package and low package warpage, the package should have smaller die with thicker overmold. In addition to the optimization analysis, plastic strain distribution on each solder ball has been determined to predict the location of solder ball with the highest strain level. The results indicate that the highest strain levels are attained in solder balls located at the edge of the die. The strain levels could then be used to predict the fatigue life of individual solder balls  相似文献   

17.
Use of 90Pb10Sn solder as a noncollapsible sphere material with 95.5Sn 4Ag0.5Cu and SnInAgCu lead-free solders is investigated. Practical reflow conditions led to strong Pb dissolution into liquid solder, resulting in >20 at.% Pb content in the original lead-free solders. The failure mechanism of the test joints is solder cracking due to thermal fatigue, but the characteristic lifetime of 90Pb10Sn/SnInAgCu joints is almost double that of 90Pb10Sn/95.5Sn4Ag0.5Cu in a thermal cycling test (TCT) over the temperature range from −40°C to 125°C. It is predicted that this is mainly a consequence of the better fatigue resistance of the SnPbInAgCu alloy compared with the SnPbAgCu alloy. Indium accelerates the growth of the intermetallic compound (IMC) layer at the low temperature co-fired ceramic (LTCC) metallization/solder interface and causes coarsening of IMC particles during the TCT, but these phenomena do not have a major effect on the creep/fatigue endurance of the test joints.  相似文献   

18.
Stresses that develop because of the coefficient of thermal expansion (CTE) mismatch between solder and substrate/components contribute to thermomechanical fatigue (TMF) of the solder joints. However, the relative importance of several processes that contribute to damage accumulation and its role in affecting the reliability of the solder joints are far from being understood. Aging, creep/stress relaxation, and stress/strain reversals are some of the important processes. These processes are affected by service conditions, such as the temperature extremes experienced, rates of heating and cooling, dwell times at the extreme temperatures, and so on. In addition, the elastic and plastic anisotropy of tin could also contribute to the damage accumulation during TMF of Sn-based solders. This preliminary effort to model TMF in Sn-Ag solder joints will consider the role of each of these parameters, with significant emphasis on the anisotropic-elastic behavior of Sn grains.  相似文献   

19.
Creep plays an important role in the mechanical behavior of solder alloys. This paper presents creep and strain rate sensitivity data for a Pb rich solder (92.5Pb, 2.5Ag, 5Sn-Indalloy 151) and compares it to the behavior of near eutectic 60Sn/40Pb solder. The high Pb alloy is used for exposures to higher temperatures than can be withstood by eutectic Sn/Pb solders. The Pb rich solder tested here is less strain rate sensitive than 60Sn/40Pb. There are also differences in the creep behavior.  相似文献   

20.
For a long time, constitutive modelling of solders has focused onto the elastic and creep properties. Indeed, the creep model describes the behaviour of solder joints under thermal cycling quite properly. However, in applications such as hand held electronic devices or automotive products, the pure mechanical impact like shock, bending and twisting may even matter more than sole thermo-mechanical fatigue.Therefore the time-independent behaviour of SnPb37, SnAg3.5 and SnAg4Cu0.5 has been investigated on flip chip solder joints. In the experimental tests a cyclic triangular strain wave with constant frequency but different amplitudes was used as the load function. This way the test enables to account for Bauschinger effects. The strain wave amplitudes ranged from Δ=0.25% to 4%, the strain wave frequency was fixed at f=1 Hz. The test temperature ranged from T=5 to 50 °C.The test specimen consisted of two silicon chips (3.3 × 3.3 mm2) bonded by 4 flip chip joints (one at each corner). A specially designed Micro Shear Tester has been used for the experiments with this type of specimen. In contrast to similar setups, it is actively compensated for its finite stiffness. Therefore, it is able to record force–displacement hysteresis with a resolution of better than 1 mN and 20 nm, respectively. Based on these measurements, the parameters of the constitutive equations have been evaluated by FEM analysis. This way, the complex stress state within the sample during the test has been considered precisely providing for high accuracy of the parameter extracted.As a typical application, a three point bending experiment has been simulated by FEM applying different constitutive models for the solder material. Comparing the results, it becomes clear: All the three contributions, i.e., the elastic, the creep, and the time-independent plastic material behaviour, are required in the model. Otherwise it would be incomplete and hence insufficient for assisting in the design of today's electronics packages even with respect to the most frequent load cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号