首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
为提高织物疵点检测的准确率和检测效果,采用了一种基于最相似邻域的背景估计法来进行检测。首先,利用同态滤波对图像进行预处理;然后,以滤波后图像每个像素点为中心点,以11像素×39像素的窗口大小为中心区域,通过计算中心区域与周围邻域的相似度,利用最相似的邻域进行背景估计;最后,利用背景差分原理获得目标图像,并采用阈值分割和形态学方法对图像进行处理,最终获得检测结果。实验结果表明:此方法优于传统的检测方法,不仅能够检测到复杂背景下的疵点图像,而且对不同组织及光照因素影响下的织物疵点图像同样具有很好的检测结果,检测准确率可达98%,具有较高的适用性与检出率,也具有一定的抗干扰性。  相似文献   

2.
利用电子仪器代替人眼检测是织物疵点检测的一个热点问题。为了解决这个问题,本文利用织物疵点灰度值偏离正常织物灰度值的原理,探讨了织物检测电子成像参数的计算方法。结合实际试验表明:此算法能有效、快速检测分辩出织物疵点。  相似文献   

3.
由于织物疵点类别较多及图像纹理多样化,为了能更有效检测织物疵点,本研究结合局部统计特征与整体显著性分析,提出一种新的织物疵点检测算法。首先将图像分为大小相同的图像块,采用局部二进制模式和灰度直方图分别提取图像块局部统计特征;其次针对每个当前图像块,随机选取K个其它图像块,分别计算局部二进制模式统计特征对比度和灰度统计特征对比度,完成基于上下文整体显著性分析生成视觉显著图;最后采用基于迭代最优阈值分割算法对显著图进行分割,得到织物疵点检测结果。实验结果表明,该算法综合了局部统计特征和整幅图像的上下文信息,可显著突出织物疵点区域,实现对织物疵点的有效检测。  相似文献   

4.
为了识别不同织物表面多种类型的疵点,提出了一种基于矩阵奇异值分解(SVD)的疵点检测方法。首先采用自适应分割技术提取织物图像中包含疵点的感兴趣区域(ROI),其次将包含疵点的ROI部分继续分割成若干小的不重叠的子图像,并对子图像进行奇异值分解。由于奇异值与织物图像的能量信息相关,通过去除表征织物纹理背景能量的奇异值,以余下的奇异值重组子图像,从而增加疵点区域与纹理背景的能量差异。最后再对ROI区域进行复原时,会出现子图像重构过程不完全连接的情况,采用二值化阈值处理可以消除影响,完成检测目的。实验证明,所提出的改进型奇异值分解技术,耗时短,效率高,对于选取的7种纹理结构不同的织物中大多数疵点,都能够识别其形状和位置。  相似文献   

5.
基于局部熵的织物疵点检测与识别的研究   总被引:14,自引:8,他引:14  
将织物图像分成大小相同的局部窗口 ,在局部熵最小的窗口区域内分割出疵点图像 ,并用数字形态学中的开运算滤除噪声 ,计算疵点形状因子等作为识别参数 ,此法因能避免对整幅图像进行复杂运算和提取特征参数时对图像的全局搜索 ,故具有识别准确率高、检测速度快等优点。  相似文献   

6.
为解决传统的完整局部二值模式在织物疵点检测时存在直方图维数过高和特征冗余并且在小区域图像变化幅度剧烈或变化幅度平缓时存在局限性的问题,提出一种改进判别性完整局部二值模式并结合自动格分割的织物瑕疵检测方法,该新算法可分为训练和测试2部分。通过实验将该算法、小波预处理的黄金图像相减方法、布林线指标方法、正则带方法进行对比,针对2 种纹理3 类瑕疵的织物图像数据集进行测试。结果表明,该方法对星形图案和箱形图案纺织品检测效果较好,一部分的查全率可达到0.99,大部分检测结果的查全率均在0.90 以上。  相似文献   

7.
二次滤波法在织物疵点边缘检测上的应用   总被引:1,自引:0,他引:1  
针对织物图像斑点噪声的特点,采用了一种新的图像边缘检测方法。该方法以锐化处理为基础,经二次滤波完成图穰预处理,克服了以往一次滤波方法的缺点,在抑制噪声的同时,增强了图像的边缘信息。通过对织物疵点的检测表明,该方法可以取得较好的边缘检测结果,是一种实用有效的方法。  相似文献   

8.
针对织物疵点语义分割任务中数据分类不均衡导致疵点检测准确率不高的问题,文章在Resnet、U-net网络结构基础上设计了CS model网络,添加了适用于小疵点及条带状疵点特征检测的MSCA注意力机制。织物图像中,破洞、污渍等织物疵点像素,占比较少,相比于全图像素为小类别疵点,导致分割结果不准确。针对小类别疵点分割准确率不高的问题,将多类别Focal Loss损失函数引入于其中,该损失函数通过提高小类别疵点的权值,使分割结果更为准确。调整Focal Loss参数对比实验结果,采用mIoU、Acc和Loss数值作为实验评价指标,分别与U-Net、ResNet50、DeepLabV3和VGG16网络的语义分割模型进行对比实验,结果表明:提出的CS model网络可将小类别疵点分割精度有效提高几个百分点。  相似文献   

9.
在织物疵点自动检测开发中,传统的图像处理代码编写繁琐、效率不高.OpenCV具有较强的图像处理能力且提供了丰富的图像处理函数,可以把OpenCV运用到织物疵点检测上.以断经、纬疵样本为例,提出在OpenCV环境下采用阈值分割提取疵点图像,利用形态学技术实现噪点分离及断线连接.边缘检测实现了疵点图像在原图像中的准确定位.实验结果表明,OpenCV有简化代码、提高编程效率的图像处理强大功能,疵点检测结果准确,效率高.  相似文献   

10.
为提高稀疏表示方法对织物疵点的检测精度,提出了基于稀疏优化的织物疵点检测算法。首先,利用L1范数最小化从待检织物图像中学习出自适应字典库,用该库对织物图像稀疏表示,进而计算出稀疏表示系数矩阵;然后,对系数矩阵进行优化处理,采用字典库及优化系数矩阵对织物图像稀疏重构;最后,将重构图像与待检织物图像相减生成残差图像,用最大熵阈值方法对残差图像分割,定位出疵点区域。实验结果表明,本文算法所重构图像准确表示了正常织物纹理,相比已有检测方法具有较高的疵点检测精度。  相似文献   

11.
The inspection of the fabric defects is an important problem, which highly affects both the quality and the cost in the textile industry. Because of consistency and accuracy problems, the inspection of the fabric defect by human experts is neither feasible nor efficient. This requires development and use of automated inspection techniques. Thus, in this study, a texture analysis method, which uses sum and difference histograms (SDH) conjointly with co-occurrence matrices, is proposed to introduce an objective criterion for defect detection. To accomplish the detection task with high accuracy, several features were extracted from SDH and then, a defect search technique, which was developed in the context of this study, was applied. Moreover, several experiments and parameter analysis were performed to carry out detection at feasible computation time and memory storage. The developed method was applied to 28 kinds of raw woven fabric defects and 27 of them (i.e. 93.1%) were successfully recognized by the proposed detection system. The quantitative results and qualitative discussions show the effectiveness of the developed strategy.  相似文献   

12.
This paper aims at investigating methods for solving the problem of automated fabric defect detection and classification, which are more essential and important in assuring the fabric quality. The work focuses on two aspects: fabric defect detection and classification. In the experiment, first, the detection texture features for texture defect are extracted using Gabor filters. The method would automatically segment defects from the regular texture. Second, texture features for classification use local binary patterns and Tamura method. Fabric samples are used in evaluation and the experimental results obtained further confirm the designed algorithm achieved a high detection success rate.  相似文献   

13.
织物疵点自动检测技术的研究进展   总被引:6,自引:0,他引:6  
介绍了织物纹理特征的提取算法、疵点分类方法和织物图像处理的硬件平台.在分析了各种算法的优点和缺点的基础上,提出了将织物疵点的检测分为粗检和细检两个过程的新思路,既可满足快速性的要求,又具有广泛的适应性.  相似文献   

14.
Jian Zhou  Jun Wang 《纺织学会志》2013,104(6):800-809
In this work, a new method based on local patch approximation is presented to address automated defect segmentation on textile fabrics. The proposed method adopts unsupervised scheme without the need of reference images or any other prior information. Image patch is approximated by dictionary learned from a testing sample in the least squares sense. With the clue of the differentiation in approximation error, abnormal map (each pixel’s anomalous likelihood) can be computed from the patch-level difference. The 2D maximum entropy with neighbourhood considered is applied to segment defective regions from the abnormal map. The experiments on 54 defective samples demonstrate that our method yields a robust and good overall performance with high precision and accepted recall rates.  相似文献   

15.
董蓉  李勃  徐晨 《纺织学报》2016,37(11):141-147
为解决现有基于图像处理的织物瑕疵检测算法实时性较差、正确率偏低等问题,提出一种包含学习和检测2个阶段的瑕疵检测算法。通过对无瑕疵模板图像的梯度能量特征及其分布特性的学习,自适应获得检测阶段所需的参数。一方面利用积分图原理将任意大小的图像块内的求和运算化简为三次加法运算,快速提取织物图像的梯度能量特征,实现织物瑕疵的实时检测,另一方面利用核函数拟合特征参数分布,结合均值漂移法求解分布峰值获得自适应的瑕疵判定阈值参数,实现织物瑕疵的准确分割。通过实验将本文算法与现有基于局部二值模式特征、小波特征、规则带特征等算法进行对比,针对包含3种纹理6类瑕疵的织物图像数据集的测试结果显示,本文算法平均处理时间为56ms,正确率为97%。  相似文献   

16.
王斌  李敏  雷承霖  何儒汉 《纺织学报》2023,44(1):219-227
为提高疵点检测的准确性和通用性,实现使用简洁而有效的形式对织物图像的特点和疵点的本质特征进行综合表达,首先,介绍了深度学习技术,对引入了深度学习的疵点检测方法进行综述,同时对深度学习与疵点检测的内在关系进行阐述;然后,分析总结了深度学习的概念及代表性的计算模型,并对引入深度学习的疵点检测方法进行归纳、总结和分类;最后,对典型的方法进行了分析,讨论了各种方法的优缺点,并对未来的研究趋势进行了展望。指出:随着深度学习的发展,探索更加通用的检测方法是推进深度学习在织物疵点检测领域应用的努力方向。  相似文献   

17.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号