首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The erbAalpha gene encodes two alpha-thyroid hormone receptor isoforms, TRalpha1 and TRalpha2, which arise from alternatively processed mRNAs, erbAalpha1 (alpha1) and erb alpha2 (alpha2). The splicing and alternative polyadenylation patterns of these mRNAs resemble that of mRNAs encoding different forms of immunoglobulin heavy chains, which are regulated at the level of alternative processing during B cell differentiation. This study examines the levels of erbAalpha mRNA in eight B cell lines representing four stages of differentiation in order to determine whether regulation of the alternatively processed alpha1 and alpha2 mRNAs parallels the processing of immunoglobulin heavy chain mRNAs. Results show that the pattern of alpha1 and alpha2 mRNA expression is clearly different from that observed for immunoglobulin heavy chain mRNAs. B cell lines display characteristic ratios of alpha1/alpha2 mRNA at distinct stages of differentiation. Furthermore, expression of an overlapping gene, Rev-ErbAalpha (RevErb), was found to correlate strongly with an increase in the ratio of alpha1/alpha2 mRNA. These results suggest that alternative processing of erbAalpha mRNAs is regulated by a mechanism which is distinct from that regulating immunoglobulin mRNA. The correlation between RevErb and erbAalpha mRNA is consistent with negative regulation of alpha2 via antisense interactions with the complementary RevErb mRNA.  相似文献   

2.
During the development of mouse B cells there is a regulated shift from the production of membrane (mb) to secretory-specific (sec) forms of immunoglobulin (Ig) mRNA. The mRNAs are produced from one gene that is alternatively processed at the 3' end. We have previously shown that there is an increase in polyadenylation efficiency accompanying the developmentally regulated shift to secretory-specific forms of Ig mRNA by DNA transfection experiments (1). When we look in vitro at nuclear extracts prepared from early/memory versus late stage/plasma B cells, we see cell stage-specific differences in the proteins which are crosslinked to poly(A) site-containing RNAs. Here we show that one of these proteins is the mouse homologue of 100 kDa subunit of Hela CPSF by immunoprecipitation and Western analysis of UV crosslinked material. The amount of 100 kDa protein and its mobility on two-dimensional gels do not change between the B cell stages. However, the binding of the 100 kDa polypeptide to poly(A) sites increases in the late stage/plasma cell lines relative to the binding seen in early/memory cell lines. The increased binding may reflect an increase in polyadenylation efficiency at the sec poly(A) site in plasma cells versus early/memory cells seen in vivo.  相似文献   

3.
4.
5.
6.
In several biosynthetic pathways of eukaryotes, multiple steps are catalyzed by enzymes physically linked as domains of multi-enzymatic proteins. The same steps in prokaryotes are frequently carried out by mono-enzymatic proteins. If genes encoding mono-enzymatic proteins are the precursors to those genes encoding multi-enzymatic proteins, how these genes fused remains an open question. However, the recent discovery of a cleavage-polyadenylation signal within an intron of the GART gene provides clues to this process and might also have more general implications for the origin of genes that contain alternative RNA processing reactions at their 5' or 3' ends.  相似文献   

7.
Proteolytic processing is required for the activation of numerous viral glycoproteins. Here we show that the envelope glycoprotein from the Zaire strain of Ebola virus (Ebo-GP) is proteolytically processed into two subunits, GP1 and GP2, that are likely covalently associated through a disulfide linkage. Murine leukemia virions pseudotyped with Ebo-GP contain almost exclusively processed glycoprotein, indicating that this is the mature form of Ebo-GP. Mutational analysis identified a dibasic motif, reminiscent of furin-like protease processing sites, as the Ebo-GP cleavage site. However, analysis of Ebo-GP processing in LoVo cells that lack the proprotein convertase furin demonstrated that furin is not required for processing of Ebo-GP. In sharp contrast to other viral systems, we found that an uncleaved mutant of Ebo-GP was able to mediate infection of various cell lines as efficiently as the wild-type, proteolytically cleaved glycoprotein, indicating that cleavage is not required for the activation of Ebo-GP despite the conservation of a dibasic cleavage site in all filoviral envelope glycoproteins.  相似文献   

8.
Core snRNP proteins bind snRNA through the conserved Sm site, PuA(U)n>/=3GPu. While yeast U1 snRNA has three matches to the Sm consensus, the U1 3'-terminal Sm site was found to be both necessary and sufficient for U1 function. Mutation of this site inhibited pre-mRNA splicing, blocked cell division and resulted in the accumulation of two 3'-extended forms of the U1 snRNA. Cells which harbor the Sm site mutation lack mature U1 RNA (U1alpha) but have a minor polyadenylated species, U1gamma, and a prominent, non-polyadenylated species, U1beta. Metabolic depletion of the essential Sm core protein, Smd1p, also resulted in the increased accumulation of U1beta and U1gamma. In vitro, synthetic U1 precursors were cleaved by Rnt1p (RNase III) very near the U1beta 3'-end observed in vivo. We propose that U1beta is an Rnt1p-cleaved intermediate and that U1 maturation to the U1alpha form occurs through an Sm-sensitive step. Interestingly, both U1alpha and a second, much longer RNA, U1straightepsilon, were produced in an rnt1 mutant strain. These results suggest that yeast U1 snRNA processing may progress through Rnt1p-dependent and Rnt1p-independent pathways, both of which require a fun-ctional Sm site for final snRNA maturation.  相似文献   

9.
10.
Proglucagon is processed differentially in pancreatic alpha-cells and intestinal endocrine L cells to release either glucagon or glucagon-like peptide-1-(7-36amide) (tGLP-1), two peptide hormones with opposing biological actions. Previous studies have demonstrated that the prohormone convertase PC2 is responsible for the processing of proglucagon to glucagon, and have suggested that the related endoprotease PC3 is involved in the formation of tGLP-1. To understand better the biosynthetic pathway of tGLP-1, proglucagon processing was studied in the mouse pituitary cell line AtT-20, a cell line that mimics the intestinal pathway of proglucagon processing and in the rat insulinoma cell line INS-1. In both of these cell lines, proglucagon was initially cleaved to glicentin and the major proglucagon fragment (MPGF) at the interdomain site Lys70-Arg71. In both cell lines, MPGF was cleaved successively at the monobasic site Arg77 and then at the dibasic site Arg109-Arg110, thus releasing tGLP-1, the cleavages being less extensive in INS-1 cells. Glicentin was completely processed to glucagon in INS-1 cells, but was partially converted to oxyntomodulin and very low levels of glucagon in AtT-20 cells in the face of generation of tGLP-1. Adenovirus-mediated co-expression of PC3 and proglucagon in GH4C1 cells (normally expressing no PC2 or PC3) resulted in the formation of tGLP-1, glicentin, and oxyntomodulin, but no glucagon. When expressed in alphaTC1-6 (transformed pancreatic alpha-cells) or in rat primary pancreatic alpha-cells in culture, PC3 converted MPGF to tGLP-1. Finally, GLP-1-(1-37) was cleaved to tGLP-1 in vitro by purified recombinant PC3. Taken together, these results indicate that PC3 has the same specificity as the convertase that is responsible for the processing of proglucagon to tGLP-1, glicentin and oxyntomodulin in the intestinal L cell, and it is concluded that this enzyme is thus able to act alone in this processing pathway.  相似文献   

11.
12.
13.
The maturation of IgM-expressing B cells to IgM-secreting plasma cells is associated with both an increase in mu mRNA and the ratio of secreted to membrane forms of mu mRNA. In contrast, previous studies demonstrated that in vitro the secreted form of alpha mRNA (alpha s mRNA) predominates regardless of the stage of B cell differentiation. The present study demonstrates that alpha s mRNA predominates in both B cells derived from the germinal centers of murine Peyer's patches and in the functional IgA memory population, suggesting that in vitro events accurately represent the generation of a secretory IgA response in vivo. Although the predominant usage of the alpha s poly(A) site is due to RNA processing, it does not depend on either the alpha s poly(A) site, the 3' splice site associated with the exon encoding the membrane exon of IgA (alphaM) or the alphaM poly(A) sites. Analysis of the sequence of the intron between the alpha s terminus and alphaM (alpha s-alphaM intron) demonstrates the existence of several potential regulatory elements. Furthermore, the effects of deletions within the alpha s-alphaM intron on 3' terminus usage demonstrate that the predominant usage of the proximal terminus is not strictly dependent on the length of the intron. Together with previous work, these observations support the idea that choice of 3' terminus for all Ig heavy chain genes is regulated by a similar mechanism, but specific sequences within a heavy chain gene can impinge upon that mechanism.  相似文献   

14.
Polyadenylation at the 3' terminus has long been considered a specific feature of mRNA and a few other unstable RNA species. Here we show that stable RNAs in Escherichia coli can be polyadenylated as well. RNA molecules with poly(A) tails are the major products that accumulate for essentially all stable RNA precursors when RNA maturation is slowed because of the absence of processing exoribonucleases; poly(A) tails vary from one to seven residues in length. The polyadenylation process depends on the presence of poly(A) polymerase I. A stochastic competition between the exoribonucleases and poly(A) polymerase is proposed to explain the accumulation of polyadenylated RNAs. These data indicate that polyadenylation is not unique to mRNA, and its widespread occurrence suggests that it serves a more general function in RNA metabolism.  相似文献   

15.
16.
17.
18.
The MDM2 oncogene product is a regulator of the p53 tumor suppressor. MDM2 is cleaved by Caspase 3 (CPP32) during apoptosis after aspartic acid-361, generating a 60 kd fragment. Here we report that human tumor cell lines often express high levels of a 60 kd MDM2 isoform (p60) in the absence of apoptosis. We demonstrate that p60 is a product of caspase cleavage of full length MDM2 after residue 361. The protease that cleaves MDM2 in non-apoptotic cells appears to be distinct from the apoptosis-specific Caspase 3, since Caspase 3 substrate poly(ADP-ribose) polymerase (PARP) is not cleaved in cells producing p60. The p60 form of MDM2 is a significant fraction of the p53-bound MDM2 protein in certain tumor cells, suggesting that it functions in the regulation of p53. p60 is also detected in breast tumors overexpressing MDM2. These observations suggest that MDM2 is regulated by caspase processing in non-apoptotic cells, and may account for the MDM2 proteins of similar mobility seen in tumors and other cell lines.  相似文献   

19.
20.
Although considerable information is currently available about the factors involved in constitutive vertebrate polyadenylation, the factors and mechanisms involved in facilitating communication between polyadenylation and splicing are largely unknown. Even less is known about the regulation of polyadenylation in genes in which 3'-terminal exons are alternatively recognized. Here we demonstrate that an SR protein, SRp20, affects recognition of an alternative 3'-terminal exon via an effect on the efficiency of binding of a polyadenylation factor to an alternative polyadenylation site. The gene under study codes for the peptides calcitonin and calcitonin gene-related peptide. Its pre-mRNA is alternatively processed by the tissue-specific inclusion or exclusion of an embedded 3'-terminal exon, exon 4, via factors binding to an intronic enhancer element that contains both 3' and 5' splice site consensus sequence elements. In cell types that preferentially exclude exon 4, addition of wild-type SRp20 enhances exon 4 inclusion via recognition of the intronic enhancer. In contrast, in cell types that preferentially include exon 4, addition of a mutant form of SRp20 containing the RNA-binding domain but missing the SR domain inhibits exon 4 inclusion. Inhibition is likely at the level of polyadenylation, because the mutant SRp20 inhibits binding of CstF to the exon 4 poly(A) site. This is the first demonstration that an SR protein can influence alternative polyadenylation and suggests that this family of proteins may play a role in recognition of 3'-terminal exons and perhaps in the communication between polyadenylation and splicing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号