首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 64 毫秒
1.
对铸造Mg-5Zn-0.6Zr-1RE-2Y镁合金进行450℃固溶+100℃时效处理,时效时间0~5个月,并通过显微硬度测试、XRD、光学金相、SEM、EDS等方法对合金时效过程中的合金相和显微组织的演变进行了研究.结果表明,450℃×12 h固溶和100℃时效后,合金随时效时间延长,晶内时效硬化效应增强,100℃时效3个月时达到硬化峰值87 HV.时效初期时合金晶内析出W相,随着时效时间的延长,合金晶内形成长周期结构X(Mg12 YZn)相,并析出β'1(MgZn)相,且含量逐渐增多.长周期X(Mg12 YZn)相和细小针(棒)状的β'1(Mgzn)相的形成是Mg-5Zn-0.6Zr-1RE-2Y合金低温时效强化的两个主要来源.  相似文献   

2.
铸造Mg-3Zn-1.5Cu-0.6Zr镁合金的时效硬化及析出相   总被引:1,自引:0,他引:1  
利用光学显微镜、显微硬度计、X射线衍射仪、扫描电镜和透射电镜分析时效热处理(T6)后的Mg-3Zn-1.5Cu-0.6Zr镁合金的析出相。结果表明:合金铸态组织主要由初晶Mg基体和非平衡共晶组织(Mg+Mg2Cu,CuMgZn)组成;经固溶处理,晶界处大部分非平衡共晶组织溶解。经180℃,16h时效后,合金达到时效硬度峰值,此时晶内析出相主要有3类:1)少量棒状的过渡相β1′-α(可能是Mg4Zn7),其轴线垂直于(0001)Mg,长度大约50nm;2)大量弥散分布的板条状和棱柱状的β2′-MgZn2,其轴线垂直于(0001)Mg,长度为50~150nm,该相是合金的主要时效硬化相;3)少量短杆状的β-MgZn,其轴线平行于(0001)Mg,长度约20nm。  相似文献   

3.
用XRD衍射和透射高分辨HTEM方法分析Mg-4Y-3Nd合金在固溶处理525℃×8 h、时效温度250℃、时效时间16 h状态下的显微组织、析出相的点阵结构和基体点阵常数变化。结果表明:经过固溶时效的Mg-4Y-3Nd合金的显微组织由α-Mg固溶体、析出相Mg24Y5、Mg41Nd5和Mg14Nd2Y组成。析出相在晶内和晶界同时析出,晶内析出相形状为块状或短杆状,呈弥散分布,晶界上析出相呈三角形为链状分布,时效析出相Mg14Nd2Y与基体为半共格界面位相关系。随着析出相的生成,基体的点阵常数变大,同一晶面的衍射角(2θ)减小,晶面间距增大。  相似文献   

4.
研究了新型铸造镁合金Mg-3.0Nd-1.5Gd-0.25Zn-0.45Zr的组织和力学性能。研究表明,试验合金的铸态组织为近等轴晶,主要由α-Mg基体和晶界处的(α-Mg+Mg12Nd)共晶组成。试验确定了固溶试验合金的较优时效处理工艺。试验合金经T6热处理后,室温屈服强度较ZM6合金显著提高。同时,试验合金的高温瞬时抗拉强度、屈服强度以及抗蠕变性能均显著优于ZM6合金。  相似文献   

5.
分析了铸造Al-Si合金中加入元素Mg和Cu对合金的固溶强化和时效硬化能力的影响.试验结果显示元素Cu对α(Al)基体具有很强的固溶强化作用,但不含Mg的合金时效硬化能力较低;元素Mg对Al基体的固溶强化作用很小,但元素Mg的加入使合金具有很强的时效硬化能力;在Al-Si合金中共同加入元素Cu和Mg使合金具有很强的固溶时效硬化能力.通过时效组织分析,对合金的时效硬化能力与时效组织的相关性进行了讨论.  相似文献   

6.
利用OM、XRD、SEM和TEM研究了Mg-10Gd-3Y-1.2Zn-0.5Zr(质量分数,%)铸态合金的显微组织和不同温度下固溶热处理后的组织演变规律。结果表明:Zn含量为1.2%的合金在等温固溶条件下,随时间的延长,晶界处LPSO层状生长,同时层状相向晶内延伸,层状相的层片变粗。随温度的升高铸态组织中原有的层状相溶解,而沿晶界化合物则向晶内有更宽的层状相生成,并随着温度的提高而变宽。此合金经不同温度的固溶后时效硬度最高可达1150MPa。  相似文献   

7.
采用光学显微镜、X射线衍射、扫描电镜以及硬度试验等手段,研究了固溶和时效处理对Mg-2Er-1Zn-0.18Zr合金组织的影响。结果表明,Mg-2Er-1Zn-0.18Zr铸态合金主要由α-Mg相和X-Mg12ErZn相组成;合金的最佳固溶工艺为540℃×32 h,在该工艺条件下X-Mg12ErZn完全溶入α-Mg基体中,析出大量的W-Mg3Er2Zn3相,且晶粒没有明显长大;随后合金经过180℃的时效处理,与固溶态合金相比,Mg-2Er-1Zn-0.18Zr时效态合金组织变化不明显,仍由α-Mg相和W-Mg3Er2Zn3相组成,合金的显微硬度值变化不大。  相似文献   

8.
Al-6.3Zn-2.8Mg-1.8Cu铸造铝合金的组织和室温力学性能   总被引:1,自引:0,他引:1  
研究了Al-6.3Zn 2.8Mg-1.8Cu铸造铝合金的组织和室温力学性能.研究表明,在金属型铸造条件下,Al-6.3Zn-2.8Mg-1.8Cu合金的铸态组织为近等轴晶,相组成为α(Al)基体、枝晶间α(Al)+η(MgZn2)共晶、晶内游离η相(MgZn2)、少量T相(Mg3ZnxCu3-xAl2)及少量颗粒状Al7Cu2Fe.固溶处理后,原铸态组织中的η(MgZn2)相大部分溶解消失,但形成新的沿晶界分布的S相(Al2CuMg).实验确定了固溶态Al-6.3Zn-2.8Mg-1.8Cu合金较优的单级和双级时效工艺.与单级时效工艺相比,采用双级时效工艺处理后,抗拉强度由480 MPa增加至490 MPa,延伸率由0.2%增加至2.2%.  相似文献   

9.
利用高分辨透射电镜和扫描电镜分析了Mg-4Zn-2Al-0.5Ca合金时效沉淀过程中的相演变。结果表明:试验合金的时效硬化曲线呈现典型的时效硬化特征。试验合金在160℃时效达到峰值硬度时其沉淀相有:平行于(0001)Mg的圆盘状沉淀相、(梳齿状)块状沉淀相以及大量的亚稳过渡相。随时效时间的延长,生成长条状相,但基体中依然存在很多后析出的细小的弥散分布的粒状沉淀相。120℃×230 h时效处理后的微观组织中存在着蜂窝状组织,宽度为3~4 nm的长条状沉淀相,直径为5~7 nm的球状沉淀相;这些沉淀相的存在大大提高了合金的硬度。  相似文献   

10.
研究了不同固溶处理工艺对Mg-2.6Sm-1.3Gd-0.6Zn-0.5Zr合金显微组织和力学性能的影响。合金的铸态显微组织主要由α-Mg和(Mg,Zn)3(Sm,Gd)1共晶相组成。510℃,4 h为最佳固溶处理条件,晶界附近的共晶相几乎全部溶于镁基体中,合金固溶态的室温抗拉强度为246 MPa,延伸率为11.3%。合金200℃时效析出序列为Mgssss→β’’(D019)→β’(bct)→β(fcc),峰时效态合金的屈服强度和抗拉强度达到185 MPa和282 MPa,延伸率为6.1%。  相似文献   

11.
研究了Mg-5Sn-1Zn-0.5Zr(SZK510)合金经固溶处理(480 ℃×10 h)和175、200、225 ℃,1~100 h时效处理后的时效硬化行为和显微组织特征,并推导出该合金的时效动力学方程.结果表明,固溶时效处理后显微组织由α-Mg和Mg_2Sn,以及少量的MgZn相和α-Zr组成;试验合金具有明显的时效硬化特征:在3个不同的时效温度下,硬化曲线都呈抛物线形状,但在175 ℃时效时,曲线出现两个峰值,并且在保温时间为3.98 h有最大的显微硬度值;试验合金的时效动力学方程符合f=1-exp(-kt~m)关系,随着时效温度提高,k值减小m值增大.  相似文献   

12.
利用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)、X射线衍射仪(XRD)和力学试验机等研究了铸造Mg-6Zn-2.5Cu合金在铸态、固溶和时效处理下的显微组织和力学性能。结果表明:合金的铸态组织主要由α-Mg和(α-Mg+MgZn2+Mg2Cu+CuZnMg)共晶相组成。在455℃固溶12~36 h时,随着时间增加,固溶效果逐渐增强,且在20 h时合金获得了较理想的显微组织及218 MPa的抗拉强度和8.68%的伸长率。随后在180℃时效6~72 h后,合金的拉伸性能随时效时间的增加呈先增加后减小的趋势,其中时效24 h时后,合金的抗拉强度和硬度达到峰值,分别为249.5 MPa和64.6 HV0.1,比铸态的分别提高了66.5 MPa和26.29%,伸长率在时效12 h时后达到了峰值6.72%。铸态合金的断裂方式以沿晶断裂为主,时效处理后合金的断裂方式为准解理断裂。  相似文献   

13.
研究热处理工艺对铸态Mg-4.2Zn-1.5RE-0.7Zr镁合金显微组织和力学性能的影响。结果表明:铸态Mg-4.2Zn-1.5RE-0.7Zr镁合金的显微组织主要由α-Mg、T相和Mg51Zn20相组成;单级等温时效(325°C,10 h)以及双级时效(325°C,4 h)+(175°C,14 h)处理均未能使T相和Mg51Zn20相溶入基体,且晶粒也未明显长大。在325°C下时效10 h,晶内析出大量短杆状β′1相,延长时效时间将导致β′1相粗化及数量减少。Mg-4.2Zn-1.5RE-0.7Zr镁合金在325°C下时效10 h后具有最高的屈服强度(153.9 MPa)和抗拉强度(247.0 MPa),相比铸态合金分别增加48 MPa和23 MPa,伸长率降低至15.6%。Mg-4.2Zn-1.5RE-0.7Zr合金经双级时效(325°C,4 h)+(175°C,14 h)处理后的屈服强度和抗拉强度与单级等温时效处理(325°C,10 h)的相当,但伸长率有所下降。此外,不同状态下Mg-Zn-RE-Zr镁合金的断裂主要表现为准解理断裂,但局部特征有差别。  相似文献   

14.
通过光学显微镜(OM)、扫描电镜(SEM)、浸泡试验、析氢试验、电化学试验和拉伸试验等研究了Sn元素对Mg-1Zn-0.3Zr-1Y-xSn(x=0、0.5、1、1.5、2、2.5、3)生物镁合金组织、耐蚀性能和力学性能的影响.结果 表明:添加Sn元素后,合金的耐蚀性和综合力学性能都有一定的提升.当Sn含量为2 mas...  相似文献   

15.
综合运用OM、XRD、FEGSEM和HRTEM手段深入分析了Mg-6%Gd-2%Y(质量分数)(记为GW62)合金铸态、固溶态和时效态的显微组织特征及演变过程。GW62合金铸态组织主要由α(Mg)和呈不连续网状的Mg_5(Gd,Y)相组成,在紧邻Mg_5(Gd,Y)处有少量非平衡凝固相Mg_2(Gd,Y);对合金进行520℃固溶处理,随着固溶时间延长,半连续状Mg_5(Gd,Y)相尺寸逐渐缩小,直至溶解,并在晶界形成大量细小fcc结构的富稀土相Mg(Gd,Y)_2,明显阻止了α(Mg)晶粒的长大;合金在175~225℃时效处理时,175℃时效硬化效果最明显,时效析出过程包括:时效初期(4~32 h),过饱和α(Mg)析出β″相;快速析出期(32~100 h),α(Mg)析出β′相,100 h达到峰值时效,析出相为β″、β′相;过时效期区(100 h),β′相尺寸逐渐增大,并转化成β_1和向稳定的β相转变。  相似文献   

16.
Mg-6.0%Zn-0.5%Zr-2.0%Nd-1.0%Y合金的时效强化研究   总被引:3,自引:1,他引:2  
对挤压 轧制制备的Mg-6.0%Zn-0.5%Zr-2.0%Nd-1.0%Y合金进行T5、T6两种热处理,通过力学性能测试,试验合金的力学性能优于未添加稀土元素的ZK60合金,在T5处理时的硬度高于T6处理时的,由金相显微观察、透射电子图像分析可知,试验合金的强化来源于时效初期的过渡相与位错的交互作用,435℃×2h固溶 150℃时效后,Mg-6.0%Zn-0.5%Zr-2.0%Nd-1.0%Y合金的脱溶顺序为:GP区→过渡相)→平衡相).其时效温度-时效时间-脱溶产物之间的关系可用自由能-成分关系或过冷奥氏体等温转变曲线来表示.  相似文献   

17.
研究挤压比及时效处理对Mg-6Zn-1Zr-1.5Y合金组织及力学性能的影响规律,初步分析了该合金在形变热处理过程中的强化机制。结果表明:随着挤压比增加,其延伸率逐渐升高,而其强度则先升高后下降;时效处理后,挤压比λ=10的棒材的强度和延伸率都有所下降,λ=13的棒材强度和延伸率都有所升高,λ=25的棒材的强度提高而延伸率降低。该合金的主要强化机制包括:细晶强化,加工硬化和时效强化;合金热挤压后的性能取决于细晶强化和加工硬化的交互作用,时效后的性能取决于时效强化与加工硬化的交互作用。  相似文献   

18.
通过金相显微分析(OM)、扫描电镜观察(SEM)、透射电镜观察(TEM)和拉伸性能测试研究不同时效时间对Mg-2.0Zn-0.5Zr-3.0Gd生物镁合金显微组织及力学性能的影响,通过质量损失和电化学方法研究合金在模拟体液(SBF)中的耐腐蚀性能。结果表明:时效时间为4~20 h时,合金中析出相的尺寸及数量随时效时间的延长而增加,析出相主要以纳米级棒状和颗粒状的(Mg,Zn)3Gd相形式存在,部分棒状析出相与α-Mg基体具有共格界面关系。合金的强度及伸长率随时效时间的延长先升高后降低。在120 h的浸泡实验中,合金的平均腐蚀速率、点蚀孔洞的数量及孔洞尺寸随时效时间的延长而逐渐增大,腐蚀速率随浸泡时间延长呈现出先减小、后增大、再缓慢减小以及最后趋于稳定的过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号