首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ultrasonic density sensor for liquids   总被引:1,自引:0,他引:1  
This paper presents an ultrasonic density sensor for liquids that unifies high accuracy with high durability and is suitable for on-line measurements in a wide range of tube diameters. The sensor consists of a transducer with a piezoceramic disk mounted between two reference rods of quartz glass. Additionally, a second transducer is used as a sound receiver. The density is obtained from the reflection coefficient of ultrasound at the interface between the quartz glass rod and the liquid and the transit time of sound between this interface and the second transducer. Parameters, such as high long-term stability and accuracy of +/-0.1% of full scale, were obtained by an internal acoustic reference measurement. The reference signal is generated using the sound radiated from the rear side of the piezoceramic disk. Design aspects such as sensor materials and signal-to-noise ratio are discussed, and experimental results are given in this paper. Applications of the sensor include concentration measurement, and ultrasonic mass flow measurement.  相似文献   

2.
Kendrick RL  Acton DS  Duncan AL 《Applied optics》1994,33(27):6533-6546
A phase-diversity wave-front sensor has been developed and tested at the Lockheed Palo Alto Research Labs (LPARL). The sensor consists of two CCD-array focal planes that record the best-focus image of an adaptive imaging system and an image that is defocused. This information is used to generate an object-independent function that is the input to a LPARL-developed neural network algorithm known as the General Regression Neural Network (GRNN). The GRNN algorithm calculates the wave-front errors that are present in the adaptive optics system. A control algorithm uses the calculated values to correct the errors in the optical system. Simulation studies and closed-loop experimental results are presented.  相似文献   

3.
4.
In this study, a novel direct X-ray conversion electronic sensor for X-ray imaging, aimed at the enhancement of the signal characteristics of a cadmium zinc telluride (CdZnTe) detector substrate, is proposed. CdZnTe substrates are promising candidates in detector technology since they have a high stopping power. The novelty of the sensor lies in the material of use as well as in the signal collector design, which exhibits “Frisch-grid” capabilities. As a result, the proposed technology provides an effective mode to shield the electron-collecting electrode from the charge induced on it from moving positive ions and trapped charge. Overall, this technology would allow for a decreased sensor thickness, accompanied with a high collector efficiency, and consequently improved signal characteristics. Therefore, the signal quality of an imaging sensor as applied to medical detector technology, radio astronomy, aviation security, surveillance and nondestructive inspection, and other industrial areas will be significantly improved  相似文献   

5.
A multiframe phase-diversity algorithm for imaging through the turbulent atmosphere tailored to the statistics of coherent light is developed and presented. The problem is posed as a maximum likelihood estimation where pupil-plane intensity data and atmospheric statistics are used to regularize the inverse problem. Reconstruction results characterized by residual mean square error are presented for varying detection parameters. The resulting algorithm appears to be robust under detection noise processes and results in significant improvement of processed images.  相似文献   

6.
7.
8.
设计、搭建了一套可调节密度式多点电容式密度传感器校准装置,并进行了电容式密度传感器低密度液氢的校准试验。实现了对液氢在一定低密度范围内(50—70kg/m3)的调节,突破了传统的常压单一密度点校准技术,实现了液氢多密度点的校准,提高了校准结果的可靠性。对电容式密度传感器校准装置各因素引入的不确定度分量进行了评定,分析得到了该装置的不确定度,试验结果表明采用给液氢增压的方式可以对液氢低密度进行准确控制,该调节装置的不确定度满足电容式密度传感器校准设计要求,并且能够对电容式密度传感器在多种低温流体介质中进行较宽密度范围校准。  相似文献   

9.
Carrieri AH 《Applied optics》2003,42(15):2772-2784
Design and functional aspects of PANSPEC, a panoramic-imaging chemical vapor sensor (PANSPEC is an abbreviation for infrared panoramic-viewing spectroradiometer), were advanced and its optical system reoptimized accordingly. The PANSPEC model unites camera and fused solid-state interferometer and photopolarimeter subsystems. The camera is an eye of the open atmosphere that collects, collimates, and images ambient infrared radiance from a panoramic field of view (FOV). The passive interferometer rapidly measures an infrared-absorbing (or infrared-emitting) chemical cloud traversing the FOV by means of molecular vibrational spectroscopy. The active photopolarimeter system provides a laser beam beacon. This beam carries identification (feature spectra measured by the interferometer) and heading (detector pixels disclosing these feature spectra) information on the hazardous cloud through a binary encryption of Mueller matrix elements. Interferometer and photopolarimeter share a common configuration of photoelastic modulation optics. PANSPEC was optimized for minimum aberrations and maximum resolution of image. The optimized design was evaluated for tolerances in the shaping and mounting of the optical system, stray light, and ghost images at the focal plane given a modulation transfer function metric.  相似文献   

10.
Javidi B  Hong SH  Matoba O 《Applied optics》2006,45(13):2986-2994
We describe a multidimensional optical sensor and imaging system (MOSIS). Using a time-multiplexing, polarimetric, and multispectral imaging system, we are able to reconstruct a fully integrated multidimensional scene. Image fusion is used to integrate the multidimensional images. The fused image contains more information than the single two-dimensional and three-dimensional (3D) images. The multidimensional imaging system utilizes polarimetric imaging, multispectral imaging, 3D integral imaging with time and space multiplexing, and 3D image-fusion techniques to reconstruct the multidimensionally integrated scene. Optical experiments and computer simulations are presented.  相似文献   

11.
The noise characteristics of a stacked CMOS active pixel sensor (SCAPS) for incident charged particles have been analyzed under 4.5 keV Si+ ion irradiation. The source of SCAPS dark current was found to change from thermal to electron leakage with decreasing device temperature. Leakage current at charge integration part in a pixel has been reduced to 0.1 electrons s−1 at 77 K. The incident ion signals are computed by subtracting reset frame values from each frame using a non-destructive readout operation. With increase of irradiated ions, the dominant noise source changed from read noise, and shot noise from the incident ions, to signal frame fixed-pattern noise from variations in sensitivity between pixels. Pixel read noise is equivalent to ten incident ions. The charge of an incident ion is converted to 1.5 electrons in the pixel capacitor. Shot noise corresponds to the statistical fluctuation of incident ions. Signal frame fixed-pattern noise is 0.7% of the signal. By comparing full well conditions to noise floor, a dynamic range of 80 dB is achieved. SCPAS is useful as a two-dimensional detector for microanalyses such as stigmatic secondary ion mass spectrometry.  相似文献   

12.
There is a need to sense vegetation from ground‐based vehicles so that plants can be treated in a selective way, thus saving on crop treatment measures. This paper introduces a sensor for detecting vegetation under natural illumination that uses three filters, red, green, and near infra‐red (NIR), with a monochrome charge couple device (CCD) camera. The sensor design and the data handling are based on the physics of illumination, reflection from the vegetation, transmission through the filters, and interception at the CCD. In order to model the spectral characteristics of the daylight in the NIR, we extend an existing standard using a black body model. We derive suitable filters, develop a methodology for balancing the sensitivity of each channel, and collect image data for a range of illumination conditions and two crop types. We present results showing that the sensor behaves as we predict. We also show that clusters form in a measurement space consisting of the red and NIR chromaticities in accordance with their expected position and shape. Presentation in this space gives a good separation of the vegetation and nonvegetation clusters, which will be suitable for physically based classification methods to be developed in future work. © 2000 John Wiley & Sons, Inc. Int J Imaging Syst Technol 11, 144–151, 2000  相似文献   

13.
A fiber-optical probe for pH sensing and real-time imaging is successfully fabricated by connecting a polymer imaging fiber and a gradient index (GRIN) lens rod which was modified with a sensing film. By employing an improved metallographic microscope, an optical system is designed to cooperate with the probe. This novel technique has high-quality imaging capabilities for observing remote samples while measuring pH. The linear range of the probe is pH 1.2-3.5. This technique overcomes the difficulty that high-quality images cannot be obtained when directly using conventional imaging bundles for pH sensing and imaging. As preliminary applications, the corrosion behavior of an iron screw and the reaction process of rust were investigated in buffer solutions of pH 2.0 and 2.9, respectively. The experiment demonstrated that the pH values of the analytes' surface were higher than that of buffer solutions due to the chemical reaction. It provides great potential for applications in optical multifunctional detection, especially in chemical sensing and biosensing.  相似文献   

14.
The construction and setup of sensors or sensor arrays determines their maximum resolution and recognition abilities. Therefore, the analysis of certain setups is an important and mandatory task during the design process of a new sensor system. This paper deals with the simulation and evaluation of the recognition abilities of active infrared sensors for autonomous systems. Additionally, the simulation method as well as the results provide useful information for other applications, where infrared sensors are used. The simulation method is based on a Monte Carlo algorithm, which uses ray tracing to calculate the impulse response of the optical channel consisting of the sending and receiving components and the environment. In order to allow a fast simulation of several configurations, an efficient and flexible computation is realized. This means that all rays contribute maximally to the final result, and different sensor characteristics can easily be calculated. Extensive experiments are carried out, and the results show different evaluation options.  相似文献   

15.
A high fill-factor self-buffered active pixel sensor and a tunable injection current compensation architecture for high dynamic range imager are proposed for scaled standard CMOS technology. The new cell, including a photo diode formed by n-well and p-type substrate and an one-transistor output buffer, shows enhanced characteristics in output voltage swing and sensitivity compared with conventional APS. The imager can achieve fill-factor of 55%, sensitivity of 3.4 V/sec-lux, and large output swing of 2.2 V at V/sub DD/=3.3 V for 0.25-/spl mu/m CMOS technology. In addition, the proposed tunable injection current compensation architecture can improve dynamic range by as much as 40 dB and can be tailor designed to meet various application specifications. A dynamic range of up to 120 dB is projected by simulation results. Experimental results of the new structure, as well as simulated design of the circuit, are presented.  相似文献   

16.
Two methods of forming regular or hypersingular boundary integral equations starting from an interior integral representations are discussed. One method involves direct treatment of the singularities such as Cauchy principal value and/or finite-part interpretation of the integrals and the other does not. By either approach, theory places the same restrictions on the smoothness of the density function for the integrals to exist, assuming sufficient smoothness of the geometrical boundary itself. Specifically, necessary conditions on the smoothness of the density function for meaningful boundary integral formulas to exist as required for the collocation procedure are established here. Cases for which such conditions may not be sufficient are also mentioned and it is understood that with Galerkin techniques, weaker smoothness requirements may pertain. Finally, the bearing of these issues on the choice of boundary elements, to numerically solve a hypersingular boundary integral equation, is explored and numerical examples in 2D are presented.  相似文献   

17.
Though advanced composites with embedded actuator materials such as shape memory alloys and piezo ceramics have been developed as active materials, another one by making use of thermal deformation of composites was proposed and an active laminate was prepared as an example by hot-pressing of aluminum plate as material of high coefficient of thermal expansion (CTE), uni-directional carbon fiber reinforced plastics (CFRP) prepreg as low CTE material and electric resistance heater, polymer adhesive film as insulator between them, and copper foils as electrodes. Actuation of this laminate is different from that of bimetal because CTE of the CFRP layer is strongly anisotropic due to directionality of its reinforcement fiber. As CTEs of the CFRP layer and the aluminum plate in the fiber direction are quite different from each other though they are close to each other in the transverse direction, smooth and uni-directional actuation becomes possible. In this study, its fundamental performances such as shape change and output force were observed and evaluated, and after establishment of its fabrication, an optical loss type sensor was formed in the active composite, by embedding multiply pre-notched optical fiber in the CFRP layer and breaking it at the pre-notches under bending, followed by lamination on aluminum plate with adhesive. As the sensing part can be formed inside the matrix without any complicated processes, a robust and low cost sensor is obtained. From the results, it becomes clear that: (1) curvature of the active composite linearly changes as a function of temperature between room temperature and its hot pressing temperature by electric resistance heating of the CFRP layer and cooling, (2) its output force against a fixed punch during heating from room temperature up to around glass transition temperature of the resin phase almost linearly increases with increasing temperature, (3) the multiply pre-notched, embedded and fractured optical fiber works as a sensitive sensor for monitoring the curvature of the active composite.  相似文献   

18.
Though advanced composites with embedded actuator materials such as shape memory alloys and piezo ceramics have been developed as active materials, another one by making use of thermal deformation of composites was proposed and an active laminate was prepared as an example by hot-pressing of aluminum plate as material of high coefficient of thermal expansion (CTE), uni-directional carbon fiber reinforced plastics (CFRP) prepreg as low CTE material and electric resistance heater, polymer adhesive film as insulator between them, and copper foils as electrodes. Actuation of this laminate is different from that of bimetal because CTE of the CFRP layer is strongly anisotropic due to directionality of its reinforcement fiber. As CTEs of the CFRP layer and the aluminum plate in the fiber direction are quite different from each other though they are close to each other in the transverse direction, smooth and uni-directional actuation becomes possible. In this study, its fundamental performances such as shape change and output force were observed and evaluated, and after establishment of its fabrication, an optical loss type sensor was formed in the active composite, by embedding multiply pre-notched optical fiber in the CFRP layer and breaking it at the pre-notches under bending, followed by lamination on aluminum plate with adhesive. As the sensing part can be formed inside the matrix without any complicated processes, a robust and low cost sensor is obtained. From the results, it becomes clear that: (1) curvature of the active composite linearly changes as a function of temperature between room temperature and its hot pressing temperature by electric resistance heating of the CFRP layer and cooling, (2) its output force against a fixed punch during heating from room temperature up to around glass transition temperature of the resin phase almost linearly increases with increasing temperature, (3) the multiply pre-notched, embedded and fractured optical fiber works as a sensitive sensor for monitoring the curvature of the active composite.  相似文献   

19.
In this paper, key paradigms of emerging imaging technologies from different technological areas, are presented. Examples of transfer, utilization, and exchange of the imaging technology are offered and discussed. These phenomena, will create advanced solutions for potential development in different areas of science and technology. Overall, new imaging technologies will merge and are expected to play an ever-expanding role in the civilian and military applications of the next century  相似文献   

20.
We have developed a methodology that can be used in reconstruction algorithms to quantify the optical coefficients and the geometrical cross section of a weakly abnormal optical target embedded in an otherwise homogeneous medium. This novel procedure uses differenttime-dependent point-spread functions to analyze the diffusive and absorptive contrasts obtained from time-of-flight measurements. Data obtained from time-resolved transillumination of a tissuelike phantom are used to test the accuracy of this new deconvolution methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号