首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the effects of premixed ratio of diethyl ether (DEE) on the combustion and exhaust emissions of a single-cylinder, HCCI-DI engine were investigated. The experiments were performed at the engine speed of 2200 rpm and 19 N m operating conditions. The amount of the premixed DEE was controlled by a programmable electronic control unit (ECU) and the DEE injection was conducted into the intake air charge using low pressure injector. The premixed fuel ratio (PFR) of DEE was changed from 0% to 40% and results were compared to neat diesel operation. The percentages of premixed fuel were calculated from the energy ratio of premixed DEE fuel to total energy rate of the fuels. The experimental results show that single stage ignition was found with the addition of premixed DEE fuel. Increasing and phasing in-cylinder pressure and heat release were observed in the premixed stage of the combustion. Lower diffusion combustion was also occurred. Cycle-to cycle variations were very small with diesel fuel and 10% DEE premixed fuel ratio. Audible knocking occurred with 40% DEE premixed fuel ratio. NOx-soot trade-off characteristics were changed and improvements were found simultaneously. NOx and soot emissions decreased up to 19.4% and 76.1%, respectively, while exhaust gas temperature decreased by 23.8%. On the other hand, CO and HC emissions increased.  相似文献   

2.
Environmental concerns and limited resource of petroleum fuels have caused interests in the development of alternative fuels for internal combustion (IC) engines. For diesel engines, alcohols are receiving increasing attention because they are oxygenated and renewable fuels. Therefore, in this study, the effect of injection timing on the exhaust emissions of a single cylinder, naturally aspirated, four-stroke, direct injection diesel engine has been experimentally investigated by using methanol-blended diesel fuel from 0% to 15% with an increment of 5%. The tests were conducted for three different injection timings (15°, 20° and 25 °CA BTDC) at four different engine loads (5 Nm, 10 Nm, 15 Nm, 20 Nm) at 2200 rpm. The experimental test results showed that Bsfc, NOx and CO2 emissions increased as BTE, smoke opacity, CO and UHC emissions decreased with increasing amount of methanol in the fuel mixture. When compared the results to those of original injection timing, NOx and CO2 emissions decreased, smoke opacity, UHC and CO emissions increased for the retarded injection timing (15 °CA BTDC). On the other hand, with the advanced injection timing (25 °CA BTDC), decreasing smoke opacity, UHC and CO emissions diminished, and NOx and CO2 emissions boosted at all test conditions. In terms of Bsfc and BTE, retarded and advanced injection timings gave negative results for all fuel blends in all engine loads.  相似文献   

3.
The aim of this study is to investigate the suitability of isobutanol–diesel fuel blends as an alternative fuel for the diesel engine, and experimentally determine their effects on the engine performance and exhaust emissions, namely break power, break specific fuel consumption (BSFC), break thermal efficiency (BTE) and emissions of CO, HC and NOx. For this purpose, four different isobutanol–diesel fuel blends containing 5, 10, 15 and 20% isobutanol were prepared in volume basis and tested in a naturally aspirated four stroke direct injection diesel engine at full -load conditions at the speeds between 1200 and 2800 rpm with intervals of 200 rpm. The results obtained with the blends were compared to those with the diesel fuel as baseline. The test results indicate that the break power slightly decreases with the blends containing up to 10% isobutanol, whereas it significantly decreases with the blends containing 15 and 20% isobutanol. There is an increase in the BSFC in proportional to the isobutanol content in the blends. Although diesel fuel yields the highest BTE, the blend containing 10% isobutanol results in a slight improvement in BTE at high engine speeds. The results also reveal that, compared to diesel fuel, CO and NOx emissions decrease with the use of the blends, while HC emissions increase considerably.  相似文献   

4.
《Energy》2005,30(11-12):2206-2218
Combustion characteristics of low-BTU gases (about 1000 kcal/N m3) were experimentally investigated in order to develop engine generators for waste gasification and power generation systems. Two simulated low-BTU gases, obtained from one-step high temperature gasification (hydrogen rich) and two-step pyrolysis/reforming gasification (methane rich), as well as natural gas, were tested in a small-scale spark ignition engine. Compared to the natural gas driven engine, the hydrogen rich low-BTU gas driven engine showed similar thermal efficiency but with significantly lower NOx and hydrocarbon emissions and wider equivalence ratio range for stable engine operation. On the other hand, the methane rich low-BTU gas engine showed narrower equivalence ratio range for stable operation. The test results show engine performance more depends on combustion characteristics than on the heating value of the fuel gas. For better engine performance, hydrogen rich fuel gas is desirable.  相似文献   

5.
This paper investigates the effects of turbocharger on the performance of a diesel engine using diesel fuel and biodiesel in terms of brake power, torque, brake specific consumption and thermal efficiency, as well as CO and NOx emissions. For this aim, a naturally aspirated four-stroke direct injection diesel engine was tested with diesel fuel and neat biodiesel, which is rapeseed oil methyl ester, at full load conditions at the speeds between 1200 and 2400 rpm with intervals of 200 rpm. Then, a turbocharger system was installed on the engine and the tests were repeated for both fuel cases. The evaluation of experimental data showed that the brake thermal efficiency of biodiesel was slightly higher than that of diesel fuel in both naturally aspirated and turbocharged conditions, while biodiesel yielded slightly lower brake power and torque along with higher fuel consumption values. It was also observed that emissions of CO in the operations with biodiesel were lower than those in the operations with diesel fuel, whereas NOx emission in biodiesel operation was higher. This study reveals that the use of biodiesel improves the performance parameters and decreases CO emissions of the turbocharged engine compared to diesel fuel.  相似文献   

6.
《Energy Conversion and Management》2001,42(15-17):2019-2027
Catalytic removal of NOx in engine exhaust gases can be accomplished by non-selective reduction, selective reduction and decomposition. Noble metals are extensively used for non-selective reduction of NOx and up to 90% of engine NOx emissions can be reduced in a stoichiometric exhaust. This requirement of having the stoichiometric fuel–air ratio acts against efficiency improvement of engines. Selective NOx reduction in the presence of different reductants such as, NH3, urea or hydrocarbons, requires close control of the amount of reductant being injected which otherwise may be emitted as a pollutant. Catalytic decomposition is the best option for NOx removal. Nevertheless, catalysts which are durable, economic and active for NOx reduction at normal engine exhaust temperature ranges are still being investigated.Three catalysts based on X–zeolite have been developed by exchanging the Na+ ion with copper, nickel and copper–nickel metal ions and applied to the exhaust of a stationary gasoline engine to explore their potential for catalytic reduction of NOx under a wide range of engine and exhaust conditions. Some encouraging results have been obtained. The catalyst Cu–X exhibits much better NOx reduction performance at any temperature in comparison to Cu–Ni–X and Ni–X; while Cu–Ni–X catalyst exhibits slightly better performance than Ni–X catalyst. Maximum NOx conversion efficiency achieved with Cu–X catalyst is 59.2% at a space velocity (sv) of 31 000 h−1; while for Cu–Ni–X and Ni–X catalysts the equivalent numbers are 60.4% and 56% respectively at a sv of 22 000 h−1. Unlike noble metals, the doped X–zeolite catalysts exhibit significant NOx reduction capability for a wide range of air/fuel ratio and with a slower rate of decline as well with increase in air/fuel ratio.  相似文献   

7.
The effect of ethylene glycol ethers on both the diesel fuel characteristics and the exhaust emissions (CO, NOx, smoke and hydrocarbons) from a diesel engine was studied. The ethers used were monoethylene glycol ethyl ether (EGEE), monoethylene glycol butyl ether (EGBE), diethylene glycol ethyl ether (DEGEE). The above effect was studied in two forms: first by determining the modification of base diesel fuel properties by using blends with oxygen concentration around 4 wt.%, and second by determining the emission reductions for blends with low oxygen content (1 wt.%) and with 2.5 wt.% of oxygen content. The addition of DEGEE enhances base diesel fuel cetane number, but EGEE and EGBE decrease it. For concentrations of ?4 wt.% of oxygen, EGEE and diesel fuel can show immiscibility problems at low temperatures (?0 °C). Also, every oxygenated compound, according to its boiling point, modifies the distillation curve at low temperatures and the distillate percentage increases. These compounds have a positive effect on diesel fuel lubricity, and slightly decrease its viscosity. Blends with 1 and 2.5 wt.% oxygen concentrations were used in order to determine their influence on emissions at both full and medium loads and different engine speeds. Generally, all compounds help to reduce CO, and hydrocarbon emissions, but not smoke. The best results were obtained for blends with 2.5 wt.% of oxygen. At this concentration, the additive efficiency in decreasing order was EGEE > DEGEE > EGBE for CO emissions and DGEE > EGEE > EGBE for hydrocarbon emissions. For NOx, both its behaviour and the sequence are opposite to that of CO.  相似文献   

8.
In the European Union, light duty vehicles (LDVs) are subject to emission targets for carbon dioxide (CO2) and limits for pollutants such as nitrogen oxides (NOx). CO2 emissions are regulated for both passenger vehicles (PV) and light commercial vehicles (LCV), as individual manufacturers are required to reach fleet averages of 130 g/km by 2015 and 175 g/km by 2017, respectively. In the case of PVs, it has been found that there is a significant divergence between real-world and type-approval CO2 emissions, which has been increasing annually, reaching 40% in 2014. On-road exceedances of regulated NOx emission limits for diesel passenger cars have also been documented. The current study investigated the LCV characteristics and CO2 and NOx emissions in the European Union. A vehicle market analysis found that LCVs comprise 17% of the diesel LDV market and while there were some data for CO2 emissions, there were hardly any data publicly available for NOx emissions. Monitoring the divergence in CO2 emissions revealed that it increased from 14% in 2006 to 33% in 2014, posing an additional annual fuel cost from 120€ in 2006 to 305€ in 2014, while a significant percentage of Euro 5 vehicles exceeded NOx emission standards.  相似文献   

9.
Diesterol is a new specific term which denotes a mixture of fossil diesel fuel (D), vegetable oil methyl ester called biodiesel (B) and plant derived ethanol (E). In the context of the present paper, this term refers specifically to the combination of diesel fuel, bioethanol produced from potato waste, dehydrated in a vapor phase using 3A Zeolite, and sunflower methyl ester produced through transesterification. The mixture of DBE, i.e. diesterol, was patented under the Iranian patent No. 39407, dated 12-3-2007. The main purpose of this research work was to reduce engine exhaust NOx, CO, HC and smoke emissions due to application of biofuel and the increase of fuel oxygen content. It was needed to prepare suitable low cost and renewable additives. The diesterol properties such as pour point, viscosity, flash point, copper strip corrosion, ash content, sulfur content and cetane number were determined experimentally. The optimum ratio of bioethanol and biodiesel was found to be 40/60 considering fuel oxygen content, fuel price and mixture properties. Bioethanol was added to enhance the oxygenated component in the fuel, while the sunflower methyl ester was added to maintain the fuel stability at low temperatures. The parameters considered for investigation are the engine power, torque, specific fuel consumption and exhaust emissions for various mixture proportions. The experimental results showed that bioethanol plays an important role in determining the flash point of the blends. By adding 3% bioethanol to diesel and sunflower methyl ester, the flash point was reduced by 16 °C. The viscosity of the blend was also reduced by increasing the amount of bioethanol. The sulfur content of bioethanol and sunflower methyl ester is very low compared to diesel fuel. The sulfur content of diesel is 500 ppm whereas that of bioethanol and sunflower methyl ester is 0 and 15 ppm, respectively. This lower sulfur content is another factor enhancing the use of fuel blends in diesel engines. The bioethanol and sunflower methyl ester combination has sulfur content less than 20 ppm. The maximum power and torque using diesel fuel were 17.75 kW and 64.2 Nm at 3600 and 2400 rpm, respectively. Adding oxygenated compounds to the new blend seems to slightly reduce the engine power and torque and increased the average sfc for various speeds. The experimental measurement and observation of smoke concentration, NOx, CO and HC concentration indicated that both of these pollutants reduced by increasing the biofuel composition of diesterol throughout the engine operating range.  相似文献   

10.
This work presents an experimental study describing a six-cylinder spark ignition engine running with a lean equivalence ratio, high compression ratio, ignition delay and used in a cogeneration system (heat and electricity production). Three types of fuels; natural gas, pure methane and methane/hydrogen blend (85% CH4 and 15% H2 by volume), were used for comparison purposes. Each fuel has been investigated at 1500 rpm and for various engine loads fixed by electrical power output conditions. CO, CO2, HC, and NOx emissions values, and exhaust gas temperature were measured. The effect of fuel composition on engine characteristics has been studied. The results show, that the hydrogen addition increased HC emissions (around 18%), as well as performance, whilst it reduced NOx (around 31%), exhaust gas temperature, CO and CO2.  相似文献   

11.
《Applied Thermal Engineering》2007,27(11-12):1904-1910
A 3-cylinder port fuel injection engine was adopted to study engine power, torque, fuel economy, emissions including regulated and non-regulated pollutants and cold start performance with the fuel of low fraction methanol in gasoline. Without any retrofit of the engine, experiments show that the engine power and torque will decrease with the increase fraction of methanol in the fuel blends under wide open throttle (WOT) conditions. However, if spark ignition timing is advanced, the engine power and torque can be improved under WOT operating conditions. Engine thermal efficiency is thus improved in almost all operating conditions. Engine combustion analyses show that the fast burning phase becomes shorter, however, the flame development phase is a little delay.When methanol/gasoline fuel blends being used, the engine emissions of carbon monoxide (CO) and hydrocarbon (HC) decrease, nitrogen oxides (NOx) changes little prior to three-way catalytic converter (TWC). After TWC, the conversion efficiencies of HC, CO and NOx are better. The non-regulated emissions, unburned methanol and formaldehyde, increase with the fraction of methanol, engine speed and load, and generally the maximum concentrations are less than 200 ppm. Experimental tests further prove that methanol and formaldehyde can be oxidized effectively by TWC. During the cold start and warming-up process at 5 °C, with methanol addition into gasoline, HC and CO emissions decrease obviously. HC emission reduces more than 50% in the first few seconds (cold start period) and nearly 30% in the following warming-up period, CO reduces nearly 25% when the engine is fueled with M30. Meanwhile, the temperature of exhaust increases, which is good to activate TWC.  相似文献   

12.
Methanol and methyl formate pyrolysis were studied by measuring CH3OH and CO concentration time-histories behind reflected shock waves. In the study of methanol pyrolysis, experimental conditions covered temperatures of 1266–1707 K, pressures of 1.1–2.5 atm, and initial fuel concentrations of 1% and 0.2% with argon as the bath gas. Detailed comparisons of CH3OH and CO concentration profiles with the predictions of the detailed kinetic mechanism of Li et al. (2007) [8] were made. Such comparisons combined with sensitivity analysis identified the need to include an additional methanol decomposition channel, CH3OH ? CH2(S) + H2O, into the mechanism. Pathway and sensitivity analyses for methanol decomposition were performed, leading to rate constant recommendations both for CH3OH unimolecular decomposition and H-abstraction reactions with improved model performance. In the study of methyl formate pyrolysis, methanol concentration time-histories were measured at temperatures over the range of 1261–1524 K, pressures near 1.5 atm, and initial fuel concentrations of 1% with argon as the bath gas. Our current work, and CO time-histories from previous work, indicates that the Dooley et al. (2010) [3] model is able to accurately simulate most species concentrations in shock tube experiments at early times. However, model improvement is still needed to match the CH3OH and CO time-histories at later times. Incorporation of the modified rate constants in the methanol sub-mechanism leads to good predictions of the full methanol time-histories at all temperatures. The kinetic implications of some aspects of the CO time-histories and suggestions for further improving the predictive capabilities of these mechanisms are discussed. The current results are the first quantitative measurements of CH3OH time-histories in shock tube experiments, and hence are a critical step toward understanding of the chemical kinetics of oxygenates.  相似文献   

13.
This paper presents the results of experimental work carried out to evaluate the combustion performance and exhaust emission characteristics of turpentine oil fuel (TPOF) blended with conventional diesel fuel (DF) fueled in a diesel engine. Turpentine oil derived from pyrolysis mechanism or resin obtained from pine tree dissolved in a volatile liquid can be used as a bio-fuel due to its properties. The test engine was fully instrumented to provide all the required measurements for determination of the needed combustion, performance and exhaust emission variables. The physical and chemical properties of the test fuels were earlier determined in accordance to the ASTM standards.ResultsIndicated that the engine operating on turpentine oil fuel at manufacture's injection pressure – time setting (20.5 MPa and 23° BTDC) had lower carbon monoxide (CO), unburned hydrocarbons (HC), oxides of nitrogen (NOx), smoke level and particulate matter. Further the results showed that the addition of 30% TPOF with DF produced higher brake power and net heat release rate with a net reduction in exhaust emissions such as CO, HC, NOx, smoke and particulate matter. Above 30% TPOF blends, such as 40% and 50% TPOF blends, developed lower brake power and net heat release rate were noted due to the fuels lower calorific value; nevertheless, reduced emissions were still noted.  相似文献   

14.
Methyl butanoate pyrolysis and decomposition pathways were studied in detail by measuring concentration time-histories of CO, CO2, CH3, and C2H4 using shock tube/laser absorption methods. Experiments were conducted behind reflected shock waves at temperatures of 1200–1800 K and pressures near 1.5 atm using mixtures of 0.1%, 0.5%, and 1% methyl butanoate in Argon. A novel laser diagnostic was developed to measure CO in the ν1 fundamental vibrational band near 4.56 μm using a new generation of quantum-cascade lasers. Wavelength modulation spectroscopy with second-harmonic detection (WMS-2f) was used to measure CO2 near 2752 nm. Methyl radical was measured using UV laser absorption near 216 nm, and ethylene was monitored using IR gas laser absorption near 10.53 μm. An accurate methyl butanoate model is critical in the development of mechanisms for larger methyl esters, and the measured time-histories provide kinetic targets and strong constraints for the refinement of the methyl butanoate reaction mechanism. Measured CO mole fractions reach plateau values that are the same as the initial fuel mole fraction at temperatures higher than 1500 K over the maximum measurement time of 2 ms or less. Two recent kinetic mechanisms are compared with the measured data and the possible reasons for this 1:1 ratio between MB and CO are discussed. Based on these discussions, it is expected that similar CO/fuel and CO2/fuel ratios for biodiesel molecules, particularly saturated components of biodiesel, should occur.  相似文献   

15.
Energy is an essential requirement for economic and social development of any country. Sky rocketing of petroleum fuel costs in present day has led to growing interest in alternative fuels like vegetable oils, alcoholic fuels, CNG, LPG, Producer gas, biogas in order to provide a suitable substitute to diesel for a compression ignition (CI) engine. The vegetable oils present a very promising alternative fuel to diesel oil since they are renewable, biodegradable and clean burning fuel having similar properties as that of diesel. They offer almost same power output with slightly lower thermal efficiency due to their lower energy content compared to diesel. Utilization of producer gas in CI engine on dual fuel mode provides an effective approach towards conservation of diesel fuel. Gasification involves conversion of solid biomass into combustible gases which completes combustion in a CI engines. Hence the producer gas can act as promising alternative fuel and it has high octane number (100–105) and calorific value (5–6 MJ/Nm3). Because of its simpler structure with low carbon content results in substantial reduction of exhaust emission. Downdraft moving bed gasifier coupled with compression ignition engine are a good choice for moderate quantities of available mass up to 500 kW of electrical power. Hence bio-derived gas and vegetable liquids appear more attractive in view of their friendly environmental nature. Experiments have been conducted on a single cylinder, four-stroke, direct injection, water-cooled CI engine operated in single fuel mode using Honge, Neem and Rice Bran oils. In dual fuel mode combinations of Producer gas and three oils were used at different injection timings and injection pressures.Dual fuel mode of operation resulted in poor performance at all the loads when compared with single fuel mode at all injection timings tested. However, the brake thermal efficiency is improved marginally when the injection timing was advanced. Decreased smoke, NOx emissions and increased CO emissions were observed for dual fuel mode for all the fuel combinations compared to single fuel operation.  相似文献   

16.
In this paper, flameless combustion was promoted to suppress thermal-NOx formation in the hydrogen-high-containing fuel combustion. The PSRN model was used to model the flameless combustion in the air for four fuels: H2/CH4 60/40% (by volume), H2/CH4 40/60%, H2/CH4 20/80% and pure hydrogen. The results show that the NOx emissions below 30 ppmv while CO emissions are under 50 ppmv, which are coincident with the experimental data in the “clean flameless combustion” regime for all the four fuels. The simulation also reveals that CO decreases from 48 ppmv to nearly zero when the hydrogen composition varies from 40% to 100%, but the NOx emission is not sensitive to the hydrogen composition. In the highly diluted case, the NOx and CO emissions do not depend on the entrainment ratio.  相似文献   

17.
In this study, chicken fat biodiesel with synthetic Mg additive was studied in a single-cylinder, direct injection (DI) diesel engine and its effects on engine performance and exhaust emissions were studied. A two-step catalytic process was chosen for the synthesis of the biodiesel. Methanol, sulphuric acid and sodium hydroxide catalyst were used in the reaction. To determine their effects on viscosity and flash point of the biodiesel, reaction temperature, methanol ratio, type and amount of catalyst were varied as independent parameters. Organic based synthetic magnesium additive was doped into the biodiesel blend by 12 μmol Mg. Engine tests were run with diesel fuel (EN 590) and a blend of 10% chicken fat biodiesel and diesel fuel (B10) at full load operating conditions and different engine speeds from 1800 to 3000 rpm. The results showed that, the engine torque was not changed significantly with the addition of 10% chicken fat biodiesel, while the specific fuel consumption increased by 5.2% due to the lower heating value of biodiesel. In-cylinder peak pressure slightly rose and the start of combustion was earlier. CO and smoke emissions decreased by 13% and 9% respectively, but NOx emission increased by 5%.  相似文献   

18.
《Energy Conversion and Management》2005,46(11-12):1731-1744
The article presents the comparative bench testing results of a naturally aspirated four stroke, four cylinder, water cooled, direct injection Diesel engine when running on shale oil that has been treated with multi-functional fuel additives. The purpose of the research is to evaluate the effectiveness of the fuel additives Marisol FT (Sweden) and SO-2E (Estonia) as well as to verify their ability to increase energy conversion and reduce brake specific fuel consumption, contamination and smoke opacity of the exhausts when fuelling the Diesel engine with shale oil.Test results show that application of these additives could be a very efficient means to improve Diesel engine performance on shale oil, especially when operating at the light load range. The brake specific fuel consumption at light loads and speeds of 1400–2000 min−1 reduces by 18.3–11.0% due to the application of the Marisol FT. The additive SO-2E proves to produce nearly the same effect.The total NOx emission from the fully loaded Diesel engine fuelled with the treated shale oil reduces by 29.1% (SO-2E) and 23.0% (Marisol FT). It is important that the lower NOx is obtained due to reducing both harmful pollutants, NO and NO2. The CO emission at rated power increases by 16.3% (SO-2E) and 48.0% (Marisol FT), whereas the smoke opacity of the exhausts increases by 35% and over 2 times, respectively. The effect of the fuel additives on the HC emission seems to be complicated and ambiguous.  相似文献   

19.
Being a fuel of different origin, the standard design parameters of a diesel engine may not be suitable for Jatropha methyl ester (JME). This study targets at finding the effects of the engine design parameters viz. compression ratio (CR) and fuel injection pressure (IP) jointly on the performance with regard to fuel consumption (BSFC), brake thermal efficiency (BTHE) and emissions of CO, CO2, HC, NOx and Smoke opacity with JME as fuel. Comparison of performance and emission was done for different values of compression ratio along with injection pressure to find best possible combination for operating engine with JME. It is found that the combined increase of compression ratio and injection pressure increases the BTHE and reduces BSFC while having lower emissions. For small sized direct injection constant speed engines used for agricultural applications (3.5 kW), the optimum combination was found as CR of 18 with IP of 250 bar.  相似文献   

20.
《Journal of power sources》2006,158(1):485-496
This paper describes a study of steam reforming of methane using unsupported nickel powder catalysts. The reaction yields were measured and the unsupported nickel powder surface was studied to explore its potential as a catalyst in internal or external reforming solid oxide fuel cells. The unsupported nickel catalyst used and presented in this paper is a pure micrometric nickel powder with an open filamentary structure, irregular ‘fractal-like’ surface and high external/internal surface ratio. CH4 conversion increases and coke deposition decreases significantly with the decrease of CH4:H2O ratio. At a CH4:H2O ratio of 1:2 thermodynamic equilibrium is achieved, even with methane residence times of only ∼0.5 s. The CH4 conversion is 98 ± 2% at 700 °C and no coke is generated during steam reforming which compares favorably with supported Ni catalyst systems. This ratio was used in further investigations to measure the hydrogen production, the CH4 conversion, the H2 yield and the selectivity of the CO, and CO2 formation. Methane-rich fuel ratios cause significant deviations of the experimental results from the theoretical model, which has been partially correlated to the adsorption of carbon on the surface according to TEM, XPS and elemental analysis. At the fuel: water ratio of 1:2, the unsupported Ni catalyst exhibited high catalytic activity and stability during the steam reforming of methane at low-medium temperature range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号