首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Vacuum》2008,82(11-12):1476-1479
CdZnTe thin films of thickness 450–1400 nm have been evaporated under vacuum onto unheated glass substrates, using a multilayer method. During film deposition, the two evaporation sources, separated by two glass cylinders, were maintained at temperatures of 720 K for Zn and at 925–1200 K for CdTe, respectively. After deposition, the samples were annealed in air up to 775 K. The structural and optical properties of both as-deposited and heat-treated samples were investigated. Depending on the preparation conditions and the annealing temperature, the value of the optical band gap, Eg, of respective films varied between 1.16 and 1.63 eV. The obtained results are discussed in correlation with the structure of the films and the role of Zn atoms in CdTe films.  相似文献   

2.
We report the structural evolution and optical properties of lanthanum doped lead zirconate titanate (PLZT) thin films prepared on Pt/TiO2/SiO2/Si substrates by chemical solution deposition. X-ray diffraction demonstrates the post-deposition annealing induced crystallization for PLZT films annealed in a temperature (Ta) range of 550–750 °C. PLZT films annealed at higher temperature exhibit polycrystalline structure along with larger grain size. Optical band gap (Eg) values determined from UV–visible spectroscopy and spectroscopic ellipsometry (SE) for PLZT films were found to be in the range of 3.5–3.8 eV. Eg decreases with increasing Ta. The optical constants and their dispersion profiles for PLZT films were also determined from SE analyses. PLZT films show an index of refraction in the range of 2.46–2.50 (λ = 632.8 nm) with increase in Ta. The increase in refractive index at higher Ta is attributed to the improved packing density and crystallinity with the temperature.  相似文献   

3.
Se75−xTe25Inx (x = 0, 3, 6, & 9) bulk glasses were obtained by melt quench technique. Thin films of thickness 400 nm were prepared by thermal evaporation technique at a base pressure of 10−6 Torr onto well cleaned glass substrate. a-Se75−xTe25Inx thin films were annealed at different temperatures for 2 h. As prepared and annealed films were characterized by X-ray diffraction and UV–Vis spectroscopy. The X-ray diffraction results show that the as-prepared films are of amorphous nature while it shows some poly-crystalline structure in amorphous phases after annealing. The optical absorption spectra of these films were measured in the wavelength range 400–1100 nm in order to derive the extinction and absorption coefficient of these films. It was found that the mechanism of optical absorption follows the rule of allowed non-direct transition. The optical band gap of as prepared and annealed films as a function of photon energy has been studied. The optical band gap is found to decrease with increase in annealing temperature in the present glassy system. It happens due to crystallization of amorphous films. The decrease in optical band gap due to annealing is an interesting behavior for a material to be used in optical storage. The optical band gap has been observed to decrease with the increase of In content in Se–Te glassy system.  相似文献   

4.
High-quality inclusion-free single crystals of ternary thallium mercury bromide, TlHgBr3, were successfully grown by Bridgman–Stockbarger method. For the pristine surface of the TlHgBr3 single crystal, X-ray photoelectron core-level and valence-band spectra were measured. The comparison on a common energy scale of the X-ray photoelectron valence-band spectrum of TlHgBr3 and the X-ray emission Br Kβ2 band, representing peculiarities of the energy distribution of the Br 4p states revealed that the main contribution of the valence Br p states, occurred in the upper portion of the valence band, with also their significant contributions in other valence band regions. It has been determined that TlHgBr3 is a semiconductor with the bandgap energy value of Eg = 2.51 eV at 100 K. The Eg value decreased up to 2.44 eV when temperature increased to 300 K.  相似文献   

5.
《Materials Letters》2007,61(11-12):2482-2485
NiOx thin films were deposited by reactive DC-magnetron sputtering from a nickel metal target in Ar + O2 with the relative O2 content of 5%. Thermal annealing effects on optical properties and surface morphology of NiOx films were investigated by X-ray photoelectron spectroscopy, thermogravimetric analysis, scanning electron microscope and optical measurement. The results showed that the changes in optical properties and surface morphology depended on the temperature. The surface morphology of the films changed obviously as the annealing temperature increased due to the reaction NiOx  NiO + O2 releasing O2. The surface morphology change was responsible for the variation of the optical properties of the films. The optical contrast between the as-deposited films and 400 °C annealed films was about 52%. In addition, the relationship of the optical energy band gap with the variation of annealing temperature was studied.  相似文献   

6.
《Optical Materials》2005,27(3):549-557
Amorphous films Ge27As13S60 (FII) and Ge14As27S59 (FIII) were prepared by thermal evaporation. Thermal and photo-induced bleaching were observed in the virgin films. Reversible photo-darkening was studied induced by various light sources (white light, monochromatic light with wavelengths 417 nm, 442 nm and 493 nm, respectively) in thermally well relaxed films. The role of actual conditions of illumination on the magnitude of photo-darkening (the incident photon flux and the penetration depth of absorbed photons) is examined. Considerable photo-darkening (dEg) observed in the studied films (dEg   200 meV for Ge14As27S59 film) is tentatively attributed to possible disorder associated with nano-scale phase separation. Actually it is attributed to the photo-enhanced interaction between excited lone-pair orbitals of atoms on the cluster surfaces and/or to covalent bonds reconstruction/interaction of the cluster surfaces where existence of stressed bonds, which are supposed to be more susceptible to photo-induced excitation, breaking and reconstruction, is expected.  相似文献   

7.
We report, the effect of air annealing on solar conversion efficiency of chemically grown nanostructured heterojunction thin films of CdS/CuInSe2, such 100, 200 and 300 °C air annealed thin films characterized for physicochemical and optoelectronic properties. XRD pattern obtained from annealed thin films confirms tetragonal crystal geometry of CuInSe2 and an increase in average crystallite size from 16 to 32 nm. An EDAX spectrum confirms expected and observed elemental composition in thin films. AFM represents high energy induced grain growth and agglomeration due to polygonization process. Increase in optical absorbance strength and decrease in energy band gap from 1.36 to 1.25 eV is observed. Increase in charge carrier concentration from 2 × 1016 to 8 × 1017 cm?3 is observed as calculated from Hall effect measurements and an enhancement in solar conversion efficiency from 0.26 to 0.47% is observed upon annealing.  相似文献   

8.
Calcium-doped BN thin films CaxBNy (x = 0.05–0.1, y = 0.7–0.9) were grown on α-Al2O3(0 0 1) substrates by pulsed laser deposition (PLD) using h-BN and Ca3N2 disks as the targets under nitrogen radical irradiation. Infrared ATR spectra demonstrated the formation of short range ordered structure of BN hexagonal sheets, while X-ray diffraction gave no peak indicating the absence of long-range order structure in the films. It was notable that Ca-doped film had 5.45–5.55 eV of optical band gap, while the band gap of Ca-free films was 5.80–5.85 eV. This change in the band gap is ascribed to interaction of Ca with the BN sheets; first principle calculations on h-BN structure indicated that variation of inter-plane distance between the BN layers did not affect the band gap. This study highlights that PLD could prepare BN having short-range structure of h-BN sheets and being doped with electropositive cation which varies the optical band gap of the films.  相似文献   

9.
《Materials Letters》2007,61(23-24):4516-4518
The present work deals with thickness dependent study of the thin films of Ge10Se90  xTex (x = 0, 10) chalcogenide glasses. Bulk samples of Ge10Se90 and Ge10Se80Te10 have been prepared by melt quenching technique. Thin films (thickness d = 800 nm and 1100 nm) of the prepared samples have been deposited on glass substrate using vacuum evaporation technique. The optical parameters i.e. optical band gap (Egopt), absorption coefficient (α), refractive index (n) and extinction coefficient (k) are calculated from the transmission spectrum in the range 400–1500 nm. The optical band gap decreases with the increase of thickness from 1.87 ± 0.01 eV (d = 800 nm) to 1.80 ± 0.01 eV (d = 1100 nm) for Ge10Se90 and from 1.62 ± 0.01 eV (d = 800 nm) to 1.48 ± 0.01 eV (d = 1100 nm) for Ge10Se80Te10 thin films.  相似文献   

10.
《Materials Research Bulletin》2006,41(7):1266-1271
This paper reports on the synthesis and the electrical, magnetic and optical properties of SmCuOS and SmCuOSe. The magnetic properties reveal that Sm is in its 3+ oxidation state (μtheo = gJ(J + 1) = 0.85 μB; g = 2/7) with a large Van Vleck contribution, and exclude the possibility of a divalent oxidation state for samarium (Sm2+; 7F0 state, g = J = 0, μeff = 0).Optical properties were studied by means of diffuse reflectance and photoluminescence spectra in the UV–vis range. The electrical measurements show that the two samarium copper oxychalcogenides, SmCuOSe and SmCuOS are semiconductors with optical band gap (Eg) values of 2.60 and 2.90 eV, respectively.  相似文献   

11.
In this paper, Fourier-transform infrared (FTIR) spectroscopy and ellipsometric spectroscopy were used to characterize the optical properties of atomic layer-deposited (ALD) ultra-thin TaN films on a Si(1 0 0) single crystal. The analysis of FTIR spectra indicates that the incorporated impurities are in the form of radicals of NHx, CHx and OHx. SiHx is also detected due to interfacial reactions between NHx and the Si substrate native oxide. These H-containing radicals can be removed by post-annealing the samples. The vibration of Ta–N bonding is at the wavenumber of 1190 cm−1, which is independent of the film thickness and post-annealing temperature. The results of ellipsometric spectra show that the band gaps are 3.28 eV, 2.65 eV and 2.50 eV as the films thicknesses are 1 nm, 5 nm and 10 nm, respectively. A slight red-shift of the band gap takes place after annealing the ultra-thin films. The mechanisms of the film optical properties were analyzed in the paper.  相似文献   

12.
Intrinsic amorphous silicon germanium (i-a-SiGe:H) films with V, U and VU shape band gap profiles for amorphous silicon germanium (a-SiGe:H) heterojunction solar cells were fabricated. The band gap profiles of i-a-SiGe:H were prepared by varying the GeH4 and H2 flow rates during the deposition process. The use of i-a-SiGe:H with band gap profile in an absorber layer for a-SiGe:H heterojunction solar cells was investigated. The solar cell using a VU shape band gap profile shows a higher efficiency compared to other shapes. The highest efficiency obtained for an a-SiGe:H heterojunction solar cell using the VU shape band gap profile technique was 9.4% (Voc = 0.79 V, Jsc = 19.0 mA/cm2 and FF = 0.63).  相似文献   

13.
Amorphous Se82 ? xTe18Sbx thin films with different compositions (x = 0, 3, 6 and 9 at.%) were deposited onto glass substrates by thermal evaporation. The transmission spectra, T(λ), of the films at normal incidence were obtained in the spectral region from 400 to 2500 nm. Based on the use of the maxima and minima of the interference fringes, a straightforward analysis proposed by Swanepoel has been applied to derive the optical constants and the film thickness. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple and DiDomenico model. Tauc relation for the allowed non-direct transition describes the optical transition in the studied films. With increasing antimony content the refractive index increases while the optical band gap decreases. The optical band gap decreases from 1.62 to 1.26 eV with increasing antimony content from 0 to 9 at.%. The chemical-bond approach has been applied successfully to interpret the decrease of the optical gap with increasing antimony content.  相似文献   

14.
Here we report the influence of Sb doping on the structural and optical properties of Zn1−xSbxSe (0  x  0.15) thin films prepared by thermal evaporation technique on glass substrate. Various characterization techniques such as X-ray diffraction (XRD), EDS, Raman spectroscopy and spectroscopic ellipsometer are employed to assess the structural and optical properties of the deposited films. XRD analysis reveals the formation of polycrystalline cubic structure having preferred growth orientation along (1 1 1) plane without any evidence of secondary phases. Crystallographic parameters like grain size, micro strain, dislocation density, number of crystallites per unit area and texture coefficient point out the structural modification in ZnSe films with Sb inclusion. Raman analysis shows the existence of three 1LO, 2LO and 3LO phonon modes at 251, 511 and 745 cm−1 in pure ZnSe while 3LO mode disappears by the incorporation of Sb atoms in ZnSe matrix. Increase in FWHM of Raman peaks with Sb concentration also indicates the change in crystalline quality of ZnSe films which is in accordance with our XRD results. Spectroscopic ellipsometry results demonstrate a decreasing trend for the optical band gap energy (from 2.61 eV to 1.81 eV) with increasing Sb content.  相似文献   

15.
Nanocrystalline Zn1?xMnxO films (x = 0, 0.05, 0.1, 0.15, and 0.2) were deposited onto corning glass substrates by a non-vacuum sol–gel spin coating method. All of the films were annealed at 450 °C for 2 h. The structural, optical and magneto-transport properties were investigated by X-ray diffraction, spectroscopic ellipsometry and a system for the measurement of the physical properties. X-ray diffraction analysis of the films reveals that the Mn-doped ZnO films crystallize in the form of a hexagonal wurtzite-type structure with a crystallite size decreases with an increase of the Mn concentration. It was also found that the microstrain increases with the increase of the Mn content. Evidence of nanocrystalline nature of the films was observed from the investigation of surface morphology using transmission, scanning electron microscopy and atomic force microscopy. The optical constants and film thicknesses of nanocrystalline Zn1?xMnxO films were obtained by fitting the spectroscopic ellipsometric data (ψ and Δ) using a three-layer model system in the wavelength range from 300 to 1200 nm. The refractive index was observed to increase with increasing Mn concentration. This increase in the refractive index with increasing Mn content may be attributed to the increase in the polarizability due to the large ionic radius of Mn2+ compared to the ionic radius of Zn2+. The optical band gap of the nanocrystalline Mn–ZnO films was determined by an analysis of the absorption coefficient. The direct transition of the series of films was observed to have energies increasing linearly from 3.17 eV (x = 0) to 3.55 eV (x = 0.2). Magnetoresistance (MR) was measured from 5 K to 300 K in a magnetic field of up to 6 T. Low-field positive MR and high-field negative MR were detected in Mn-doped ZnO at 5 K. Only negative MR was observed for temperatures above 200 K. The positive MR in Mn-doped ZnO films was observed to decrease drastically when the temperature increased from 5 K to 100 K. The isothermal MR of Zn1?xMnxO films with different Mn concentrations at 5 K reveals that the increase of the Mn content induces a giant positive MR above x = 0.05 and reaches up to 55% at an applied field of 30 kOe for x = 0.2.  相似文献   

16.
Polycrystalline zirconia thin films were obtained on silica substrates by the spray pyrolysis technique using a water/isopropanol solution of a precursor containing zirconium in the form of an anionic oxalate complex. The as-deposited products were amorphous. Crystallization with formation of homogeneous dense nanostructured cubic zirconia thin films occurred after heat-treatment in air at temperatures T=500–700 °C. In the range 700–1000 °C both cubic and monoclinic zirconia was present in the films, the C-ZrO2 content decreasing with temperature rise. Penetration of SiO2 from the silica substrate was registered in the films by X-ray photoelectron spectroscopy (XPS). A severe attack of the substrate by zirconia resulting in formation of ZrSiO4 was observed after annealing of the film at 1100 °C.  相似文献   

17.
Antimony phosphate glasses (SbPO) doped with 3 and 6 mol% of Cr3+ were studied by Electron Paramagnetic Resonance (EPR), UV–VIS optical absorption and luminescence spectroscopy. The EPR spectra of Cr3+-doped glasses showed two principal resonance signals with effective g values at g = 5.11 and g = 1.97. UV–VIS optical absorption spectra of SbPO:Cr3+ presented four characteristics bands at 457, 641, 675, and 705 nm related to the transitions from 4A2(F) to 4T1(F), 4T2(F), 2T1(G), and 2E(G), respectively, of Cr3+ ions in octahedral symmetry. Optical absorption spectra of SbPO:Cr3+ allowed evaluating the crystalline field Dq, Racah parameters (B and C) and Dq/B. The calculated value of Dq/B = 2.48 indicates that Cr3+ ions in SbPO glasses are in strong ligand field sites. The optical band gap for SbPO and SbPO:Cr3+ were evaluated from the UV optical absorption edges. Luminescence measurements of pure and Cr3+-doped glasses excited with 350 nm revealed weak emission bands from 400 to 600 nm due to the 3P1  1S0 electronic transition from Sb3+ ions. Cr3+-doped glasses excited with 415 nm presented Cr3+ characteristic luminescence spectra composed by two broad bands, one band centered at 645 nm (2E  4A2) and another intense band from 700 to 850 nm (4T2  4A2).  相似文献   

18.
《Materials Letters》2007,61(11-12):2382-2384
A new copper thioborate, CuBS2, was synthesized at high-pressure/temperature condition of 3 GPa and 700–900 °C. The crystal structure was refined by the Rietveld analysis of the powder X-ray diffraction data. The compound crystallizes into a tetragonal unit cell (a = 0.5044(1) nm, c = 0.8947(2) nm, space group: I-42d), isostructural with CuMS2 chalcopyrite compounds (M: Al, Ga, and In). The compound is the first representative of the chalcopyrite-type family consisting of BS4-tetrahedra. From the UV–Vis diffuse reflectance spectrum, the optical band gap of CuBS2 was estimated to be Eg = 3.61 eV.  相似文献   

19.
The results of the investigations carried out on the third-order nonlinearity in zinc oxide (ZnO) nanocrystals (NCs) by Z-scan technique are included in this paper. ZnO NCs show negative nonlinearity and good nonlinear absorption behavior at 532 nm. The third-order optical susceptibility χ(3) increases with enlargement of NCs due to the size dependent enhancement of exciton oscillator strength.The synthesis of ZnO NCs was performed by laser ablation from a high-purity metallic target of Zn in distilled water medium. For the ablation process, a high frequency pulsed Nd:YAG laser was employed operating at 532 nm with 100 ns pulse duration. UV–vis absorption spectroscopy illustrated the enhancement of the size of ZnO NCs upon increasing the laser pulse energy applied in ablation process. Accordingly the corresponding optical band gap (Eg) decrease by increasing the size of NCs. X-ray diffraction (XRD) associated with transmission electron microscopy (TEM) was utilized to characterize the crystalline phase and also for determining the ZnO NCs morphology.  相似文献   

20.
《Materials Research Bulletin》2013,48(11):4723-4728
Self-dopant LaMnO3+δ nanoparticles have been successfully synthesized by metal citrate complex method based on Pechini-type reaction route, at low temperature (773 K). Powder X-ray diffraction and transmission electron microscope revealed pure and nanostructured phase of LaMnO3+δ (δ = 0.125) with an average grain size of ∼72 nm (773 K) and ∼80 nm (1173 K). DC-magnetization measurements under an applied magnetic field of H = ±60 kOe showed an increase in the magnetization with the increase of calcination temperature. Ferromagnetic nature shown by non-stoichiometric LaMnO3+δ was verified by well-defined hysteresis loop with large remanent magnetization (Mr) and coercive field (Hc). Surface areas of LaMnO3+δ nanoparticles were found to be 157.4 and 153 m2 g−1 for the samples annealed at 773 K and 1173 K, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号