共查询到20条相似文献,搜索用时 0 毫秒
1.
Shurong Wang Fan Zhang Qinjie Cai Xinbao Li Lingjun Zhu Qi Wang Zhongyang Luo 《International Journal of Hydrogen Energy》2014
The development of a high performance and low cost catalyst is an important contribution to clean hydrogen production via the catalytic steam reforming of renewable bio-oil. Solid waste coal ash, which contains SiO2, Al2O3, Fe2O3 and many alkali and alkaline earth metal oxides, was selected as a superior support for a Ni-based catalyst. The chemical composition and textural structures of the ash and the Ni/Ash catalysts were systematically characterized. Acetic acid and phenol were selected as two typical bio-oil model compounds to test the catalyst activity and stability. The conversion of acetic acid and phenol reached as much as 98.4% and 83.5%, respectively, at 700 °C. It is shown that the performance of the Ni/Ash catalyst was comparable with other commercial Ni-based steam reforming catalysts. 相似文献
2.
Maoshuai Li Xiaodong Wang Shuirong Li Shengping Wang Xinbin Ma 《International Journal of Hydrogen Energy》2010
Nickel based catalysts derived from thermal decomposition of Ni/Mg/Al hydrotalcite-like precursors have been studied in ethanol steam reforming (ESR) for hydrogen production. X-ray diffraction (XRD), transmission electron microscopy (TEM), temperature-programmed reduction (TPR) and thermogravimetric analysis (TGA) were used to investigate the physic-chemical properties of the catalysts prepared. The catalysts being mainly composed of Ni–Mg–O solid solution phase exhibited high activity and stability for ethanol steam reforming. Ethanol could be completely converted even at 673 K, and hydrogen concentration tended to increase with increasing reaction temperature, gas hourly space velocity (GHSV) and Ni/Mg ratio. XRD and TEM investigations demonstrate that low Ni/Mg ratio led to insufficient Ni0 phase available, which may result in decreasing activity and stability due to coke formation observed on the NiMg10 (Ni/Mg = 1/10) catalyst. High reduction pretreatment temperature (>973 K) could promote the reduction of Ni0 metal, and effectively improve the catalytic activity and stability. The optimum reduction temperature might be 1073 K, at which proper amount of Ni0 species and good resistance to coke formation could be obtained. 相似文献
3.
Tomoaki Namioka Atsushi Saito Yukiharu Inoue Yeongsu Park Tai-jin Min Seon-ah Roh Kunio Yoshikawa 《Applied Energy》2011
Operating conditions for low-temperature pyrolysis and steam reforming of plastics over a ruthenium catalyst were investigated. In the range studied, the highest gas and lowest coke fractions for polystyrene (PS) with a 60 g h−1 scale, continuous-feed, two-stage gasifier were obtained with a pyrolyzer temperature of 673 K, steam reforming temperature of 903 K, and weight hourly space velocity (WHSV) of 0.10 g-sample g-catalyst−1 h−1. These operating conditions are consistent with optimum conditions reported previously for polypropylene. Our results indicate that at around 903 K, the activity of the ruthenium catalyst was high enough to minimize the difference between the rates of the steam reforming reactions of the pyrolysates from polystyrene and polypropylene. The proposed system thus has the flexibility to compensate for differences in chemical structures of municipal waste plastics. In addition, the steam reforming temperature was about 200 K lower than the temperature used in a conventional Ni-catalyzed process for the production of hydrogen. Low-temperature steam reforming allows for lower thermal input to the steam reformer, which results in an increase in thermal efficiency in the proposed process employing a Ru catalyst. Because low-temperature steam reforming can be also expected to reduce thermal degradation rates of the catalyst, the pyrolysis-steam reforming process with a Ru catalyst has the potential for use in small-scale production of hydrogen-rich gas from waste plastics that can be used for power generation. 相似文献
4.
Aingeru Remiro Beatriz ValleLide Oar-Arteta Andrés T. AguayoJavier Bilbao Ana G. Gayubo 《International Journal of Hydrogen Energy》2014
The feasibility of the steam reforming of bio-oil aqueous fraction and bio-ethanol mixtures has been studied in a continuous process with two in-line steps: thermal step at 300 °C (for the controlled deposition of pyrolytic lignin during the heating of the bio-oil/bio-ethanol feed) followed by steam reforming in a fluidized bed reactor on a Ni/α-Al2O3 catalyst. The effect of bio-ethanol content in the feed has been analyzed in both the thermal and reforming steps, and the suitable range of operating conditions (temperature and space-time) has been determined for obtaining a high and steady hydrogen yield. Higher ethanol content in the mixture feed improves the reaction indices and reduces coke deposition. Operating conditions of 700 °C and space-times higher than 0.23 gcatalyst h (gbio-oil+EtOH)−1 are suitable for attaining almost fully conversion of oxygenates (bio-oil and ethanol) and hydrogen yields above 93%, with low catalyst deactivation. 相似文献
5.
《International Journal of Hydrogen Energy》2019,44(20):9873-9882
Oxidative steam reforming of methanol (OSRM), which is a convenient reaction for producing hydrogen, suffers from the hot spot formation problem when conventional particle catalysts are used. Recently, an anodic aluminum oxide (AAO)-supported Cu-Zn catalyst was proposed as an OSRM catalyst for its high thermal conductivity through the aluminum metal body. In this study, OSRM was conducted in a prototype reactor packed with the AAO plate catalyst strips. It was verified that the high thermal conductivity of the catalyst effectively suppresses the hot spot formation and makes the temperature profile smooth along the reactor. The start-up time of the reactor depended on the preheating temperature and was very short (less than 2 min) for preheating over 503 K. The methanol conversion and reactor temperature increased with increasing O2/CH3OH mole ratio, indicating that the mole ratio can be used as a control variable to operate the reactor at desired conditions. Further, a reactor model was developed and verified, and the simulation showed that for a given total reactor volume, an optimal reactor configuration could be achieved by shortening the reactor length while widening the cross-sectional area. 相似文献
6.
Beibei Yan Wanqing Li Junyu Tao Ningge Xu Xiangping Li Guanyi Chen 《International Journal of Hydrogen Energy》2017,42(10):6674-6682
Hydrogen production from biomass in particular bio-oils appears interesting as bio-oils is easy to transport and storage with high conversion towards hydrogen. Phenol as presentation of lignin-derived bio-oils was chosen in this paper and was studied under aqueous phase reforming (APR) reaction using Nickel-based catalysts with ZSM-5 as support. The catalysts were synthesized by incipient wetness impregnation, and their physical and chemical properties were characterized by XRD, NH3-TPD, H2-TPR, SEM, TEM and N2 adsorption–desorption. Ni/ZSM-5 was studied with different Si/Al molar ratio and different Ni content on APR of phenol. The reactant concentration, reaction pressure and temperature were also evaluated. Ni/ZSM-5 with Si/Al molar ratio of 25 and nickel content of 16% exhibited the highest catalytic activity. Hydrogen production were maximized over the temperature of 240 °C, reaction pressure of 4 MPa and the phenol concentration of 0.2 mol/L. 相似文献
7.
Fu Ming Qi Wei Zhang Zhikai Zhang Suping Yan Yongjie 《Energy Sources, Part A: Recovery, Utilization, and Environmental Effects》2016,38(14):2128-2134
Hydrogen production by steam reforming reaction of glycerol over Co/La/Ni-Al2O3 was studied in tubular fixed-bed reactor. The influences of operating parameters such as temperature, steam/carbon ratio, and weight hourly space velocity (WHSV) on hydrogen yield and carbon conversion were examined under atmospheric pressure. The results showed that carbon conversion increased with the increase of temperature and steam-to-carbon mole ratio (S/C). At 700°C, S/C=3:1, and WHSV=2.5h?1, hydrogen yield and potential hydrogen yield were up to 77.64% and 89.64%, respectively; meanwhile, the carbon conversion reached 96.36%. 相似文献
8.
Min Hye Youn Jeong Gil SeoJi Chul Jung Sunyoung ParkIn Kyu Song 《International Journal of Hydrogen Energy》2009
Mesoporous yttria-stabilized zirconia (YSZ-X) supports with different Y/Zr molar ratio (X) were prepared by a sol–gel method. 20 wt% Ni catalysts supported on YSZ-X (X = 0, 0.1, 0.2, and 0.3) were then prepared by an incipient wetness impregnation method for use in hydrogen production by auto-thermal reforming of ethanol. The effect of Y/Zr molar ratio (X) on the catalytic performance of Ni/YSZ-X (X = 0, 0.1, 0.2, and 0.3) catalysts was investigated. Hydrogen selectivity and by-product distributions over the catalysts were different depending on the Y/Zr molar ratio (X). Hydrogen selectivity over Ni/YSZ-X (X = 0, 0.1, 0.2, and 0.3) catalysts showed a volcano-shaped curve with respect to Y/Zr molar ratio (X). Among the catalysts tested, Ni/YSZ-0.1 showed the best catalytic performance and the lowest carbon deposition in hydrogen production by auto-thermal reforming of ethanol. High reducibility and excellent structural stability of Ni/YSZ-0.1 catalyst were responsible for its superior catalytic performance. 相似文献
9.
Metal oxide-stabilized mesoporous zirconia supports (M–ZrO2) with different metal oxide stabilizer (M = Zr, Y, La, Ca, and Mg) were prepared by a templating sol–gel method. 20 wt% Ni catalysts supported on M–ZrO2 (M = Zr, Y, La, Ca, and Mg) were then prepared by an incipient wetness impregnation method for use in hydrogen production by auto-thermal reforming of ethanol. The effect of metal oxide stabilizer (M = Zr, Y, La, Ca, and Mg) on the catalytic performance of supported nickel catalysts was investigated. Ni/M–ZrO2 (M = Y, La, Ca, and Mg) catalysts exhibited a higher catalytic performance than Ni/Zr–ZrO2, because surface oxygen vacancy of M–ZrO2 (M = Y, La, Ca, and Mg) and reducibility of Ni/M–ZrO2 (M = Y, La, Ca, and Mg) were enhanced by the addition of lower valent metal cation. Hydrogen yield over Ni/M–ZrO2 (M = Zr, Y, La, Ca, and Mg) catalyst was monotonically increased with increasing both surface oxygen vacancy of M–ZrO2 support and reducibility of Ni/M–ZrO2 catalyst. Among the catalysts tested, Ni catalyst supported on yttria-stabilized mesoporous zirconia (Ni/Y–ZrO2) showed the best catalytic performance. 相似文献
10.
Mingqiang Chen Jiaxin Hu Yishuang Wang Chunsheng Wang Zhiyuan Tang Chang Li Defang Liang Wen Cheng Zhonglian Yang Han Zhang 《International Journal of Hydrogen Energy》2021,46(5):3651-3668
Steam reforming of bio-oil derived oxygenates is a green and sustainable method for hydrogen production. In this work, hydrogen production from steam reforming of acetic acid (SRAA) was investigated over Ti-modified Ni/Attapulgite (ATP) catalysts that prepared via sequential precipitation technique. The effects of Ti additive, precipitation sequence and Ti-salt precursors (TiCl4, TiOSO4) on the structural and physicochemical properties of catalysts were characterized by N2 adsorption-desorption, XRD, FT-IR, HRTEM, XPS, H2-TPR and NH3-TPD. These results indicated that the interaction among Ti species, Ni active metal and ATP enhanced the reduction performance as well as weakened surface acidity of the Ni/ATP catalyst, and also promoted the electron transfer to form Niδ? species. Obviously, compared with Ti precursor salts, the precipitation sequences played a key role in determining the surface properties of Ti-modified catalysts. Among them, the Ni–TiS/ATP catalyst synthesized by co-precipitation method exhibited better reducibility and lower surface acidity, as well as produced more Niδ? species and Niδ?-Ov-Ti3+ interface sites. Then the synergistic effects among the above-mentioned characters made the Ni–TiS/ATP catalyst present highest carbon conversion (93.4%) and H2 yield (77.6%) during SRAA reactions. The analyses of XRD, HRTEM and TG were implemented on used catalysts and discovered Ni–TiS/ATP catalysts shown promising metal sintering and coke resistance, which mainly caused by the presence of flat Ni–Ti@ATP structures. The possible conversion mechanism of acetic acid in the flat Ni–Ti@ATP structure of co-precipitation Ti-modified catalyst was also elucidated. 相似文献
11.
Shurong Wang Qinjie CaiFan Zhang Xinbao LiLi Zhang Zhongyang Luo 《International Journal of Hydrogen Energy》2014
Catalytic reforming of three typical bio-oil model compounds, phenol, acetic acid and hydroxyacetone, has been carried out over a Ni/nano-Al2O3 catalyst. Al2O3, in the form of nano-rods of length approximately 40 nm, was selected as the catalyst support. The catalyst showed superior performance in terms of activity and stability. The conversions for phenol, acetic acid and hydroxyacetone reached 84.2%, 98.2% and 98.7%, respectively, at the reaction temperature of 700 °C. The corresponding hydrogen yields were 69%, 87% and 97.2%. The catalyst maintained its high reactivity for more than 10 h in the catalytic reforming of three model compounds. The influences of steam to carbon ratio, catalyst loading and Ni content in the catalyst on the reforming performance were also investigated. In addition, the possible decomposition pathways for phenol, acetic acid and hydroxyacetone are proposed. 相似文献
12.
Mesoporous alumina xerogel (A-SG) is prepared by a sol–gel method for use as a support for a nickel catalyst. The Ni/A-SG catalyst is then prepared by an impregnation method, and is applied to hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of the mesoporous alumina xerogel support on the catalytic performance of Ni/A-SG catalyst is investigated. For the purpose of comparison, a nickel catalyst supported on commercial alumina (A-C) is also prepared by an impregnation method (Ni/A-C). Both the hydroxyl-rich surface and the electron-deficient sites of the A-SG support enhance the dispersion of the nickel species on the support during the calcination step. The formation of the surface nickel aluminate phase in the Ni/A-SG catalyst remarkably increases the reducibility and stability of the catalyst. Furthermore, the high-surface area and the well-developed mesoporosity of the Ni/A-SG catalyst enhance the gasification of surface hydrocarbons that are adsorbed in the reaction. In the steam reforming of LNG, the Ni/A-SG catalyst exhibits a better catalytic performance than the Ni/A-C catalyst in terms of LNG conversion and hydrogen production. Moreover, the Ni/A-SG catalyst shows strong resistance toward catalyst deactivation. 相似文献
13.
Ceng WuRonghou Liu 《International Journal of Hydrogen Energy》2011,36(4):2860-2868
Steam reforming of crude bio-oil or some heavy component present in bio-oil is a great challenge for sustainable hydrogen production due to the extensive coke formation and catalyst deactivation. Catalyst regeneration will be an unavoidable operation in this process. In this paper, m-cresol (a model compound derived from bio-oil) was steam reformed on commercial Ni-based catalyst. Two conventional carbon elimination methods for coked catalyst were applied and the results showed that sustainable hydrogen production can be obtained based on carbon deposition/elimination. The carbon deposition can be gasified easily under certain temperature. The activity of regenerated catalyst samples can be nearly recovered as the fresh ones. Under the reaction conditions of 850 °C and steam to carbon ratio 5:1, >66% hydrogen mole fraction, >81% hydrogen yield, and >97% carbon conversion can be achieved based on regenerated catalyst. Catalyst characterization indicated that the loss of active metal can be considered as the main reason for tiny activity drop. Ni redispersion and Fe contamination may be another two factors that influence catalyst activity. 相似文献
14.
《International Journal of Hydrogen Energy》2020,45(46):24397-24411
In our earlier work, we have reported that Ni supported on γ-Al2O3–La2O3–CeO2 (ALC) catalyst prepared via metal organic framework (MOF) was more active for acetic acid steam reforming (AASR) [1]. Here we report detailed study on the performance of this catalyst for AASR. Effects of operating conditions such as temperatures (400–650 °C), steam to carbon molar ratio (S/C) and feed flow rate (1.5–5.5 mL/h) were evaluated and optimized. Results showed an excellent activity for AASR at the molar ratio S/C = 6.5, feed flow rate = 2.5 mL/h and, at 600 °C with almost total conversion and more than 90% of H2 yield. The ordered porous structure of embedded nickel supported catalyst promotes excellent steam reforming activity and water gas shift reaction even at low temperatures, which leads to the good stable behaviour up to 36 h of TOS. The coke formation was also significantly suppressed by ALC support. Catalyst regenerated by passing oxygen at 500 °C and followed by reduction in hydrogen also show a good activity. Catalysts were characterized by DT-TGA, XRD, TEM, H2-TPR and N2-adsorption-desorption to understand the micro structure and coke deposition behaviour. 相似文献
15.
《International Journal of Hydrogen Energy》2019,44(37):20770-20781
The activity of Ni supported on MCM-41 catalyst with/without scandium promoter was investigated for hydrogen production. The performance of the catalysts with different Sc loadings (0.00, 0.10, 0.25, 0.50, 0.75, 1.00 and 3.00 wt%) was examined. N2 adsorption-desorption, X-ray diffraction (XRD), temperature-programmed reduction (TPR), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used for the characterization of the catalytic materials. The prepared catalysts were tested in dry reforming of methane. The effect of Sc addition on activity, hydrogen yield, H2/CO ratio and stability are discussed. CH4 and CO2 conversions were measured under atmospheric pressure at 800 °C. Low Sc loading (<0.75 wt%) showed a positive effect on H2 yield, CH4 and CO2 conversions. Addition of Sc strengthened the interaction of Ni with support and also increased the basicity which in turn affected the amount of CO2 adsorbed on the surface of the catalyst. Notably, promoting with Sc almost suppressed the carbon formation leading to outstanding catalytic stability; thus 17% carbon deposition reduction was attained. The effect of different reaction temperatures, GHSV and CH4:CO2 ratio was also investigated. 相似文献
16.
Yong GuoXiaohui Liu Muhammad Usman AzmatWenjie Xu Jiawen RenYanqin Wang Guanzhong Lu 《International Journal of Hydrogen Energy》2012,37(1):227-234
A Ni-B amorphous alloy catalyst (AP Ni) was prepared and used in an aqueous-phase reforming (APR) of glycerol. Higher stability and higher selectivity towards H2 were obtained when compared with Raney Ni. After 130 h’ on stream aqueous-phase reforming of glycerol, the amorphous Ni-B catalyst was transformed to hexagonal closed-packed (hcp) Ni crystallites. The high selectivity towards hydrogen and catalytic stability may be due to the formation of hcp Ni crystallites during reaction and the protection of B2O3. The AP Ni catalyst was found to be 35-50% more active in terms of the H2 production rate and 17-31% more selective toward H2 as compared to Raney Ni. The reforming reaction at different reaction temperature, feedstock concentration, feedstock flow rate and other biomass derivatives i.e., ethylene glycol and sorbitol, were also investigated over AP Ni catalyst. 相似文献
17.
《Journal of power sources》2006,159(2):1248-1257
Experimental and modelling studies have been conducted on catalytic autothermal reforming (ATR) of methane for hydrogen production over a sulfide nickel catalyst on a gamma alumina support. The experiments are performed with different feedstock under thermally neutral conditions. The results show that the performance of the reformer is dependent on the molar air-to-fuel ratio (A/F), the molar water-to-fuel ratio (W/F) and the flowrate of the feedstock mixture. The optimum conditions for high methane conversion and high hydrogen yield are A/F = 3–3.5, W/F = 2–2.5 and a fuel flowrate below 120–250 l h−1. Under these conditions, a methane conversion of 95–99% and a hydrogen yield of 39–41% on a dry basis can be achieved and 1 mole of methane can produce 1.8 moles of hydrogen at an equilibrium reactor temperature of not exceeding 850 °C.A two-dimensional reactor model is developed to simulate the conversion behaviour of the reactor for further study of the reforming process. The model includes all aspects of the major chemical kinetics and the heat and mass transfer phenomena in the reactor. The predicted results are successfully validated with experimental data. 相似文献
18.
Xuli ZhaiYinhong Cheng Zhongtao ZhangYong Jin Yi Cheng 《International Journal of Hydrogen Energy》2011,36(12):7105-7113
A comprehensive study on the catalytic performance of Ni catalyst to implement millisecond steam reforming of methane (SRM) reaction in micro-channel reactors was conducted in this work. A new method to manufacture the metal-ceramics complex substrate as catalyst support was presented, that is, a layer of nano-particles, α-Al2O3, was thermally sprayed on a metallic substrate, usually FeCrAlloy. Ni or Rh catalyst was then impregnated on the substrate, forming firm and active catalyst coatings. The fall-off rate of the catalyst can be neglected after the plates experienced the high-temperature SRM reaction, showing the reliability in long-term use and the excellent catalytic performance for SRM reaction in micro-channel reactors. In comparison with the expensive Rh catalyst, Ni also showed wonderful performance to catalyze the SRM reaction in micro-reactors within milliseconds. Using the appropriate reactor design, CH4 conversion reached above 90% when the residence time was as short as 32 ms for catalyst loading of 6.8 g/m2. When the residence time was longer than 100 ms, CH4 conversion was above 98%. Besides, catalyst deactivation was not detected for 500 h on stream with S/C ratio of 3.0, and for 12 h with S/C of 1.0 as well. Extensive characterizations on these Ni catalyst plates using XRD, SEM, TEM and XPS demonstrated that Ni catalysts prepared in this work did not show any sign of deactivation after being used in the micro-channel system under high-temperature operation. 相似文献
19.
Increasing biodiesel production has resulted in a glut of glycerin that has led to a precipitous drop in market prices. In this study, the use of glycerin as a biorenewable substrate for hydrogen production, using a steam reforming process, has been evaluated. Production of hydrogen from glycerin is environmentally friendly because it adds value to this byproduct generated from biodiesel plants. The study focuses on nickel-based catalysts with MgO, CeO2, and TiO2 supports. Catalysts were characterized with thermogravimetric analysis and X-ray diffraction techniques. Maximum hydrogen yield was obtained at 650 °C with MgO supported catalysts, which corresponds to 4 mol of H2 out of 7 mol of stoichiometric maximum. 相似文献
20.
《International Journal of Hydrogen Energy》2019,44(1):213-225
In recent times, glycerol has been employed as feedstock for the production of syngas (H2 and CO) with H2 as its main constituent. This study centers on dry reforming of glycerol over Ag-promoted Ni/Al2O3 catalysts. Prior to characterization, the catalysts were synthesized using the wet impregnation method. The reforming process was carried out using a fixed bed reactor at reactor operating conditions; 873–1173 K, carbon dioxide to glycerol ratio of 0.5 and gas hourly space velocity (WHSV) in the range of 14.4 ≤ 72 L gcat−1 h−1). Ag (3)-Ni/Al2O3 gave highest glycerol conversion and hydrogen yield of 40.7% and 32%, respectively. The optimum conditions which gave highest H2 production, minimized methane production and carbon deposition were reaction temperature of 1073 K and carbon dioxide to glycerol ratio of 1:1. This result can attributed to the small metal crystallite size characteristics possessed by Ag (3)–Ni/Al2O3, which enhanced metal dispersion in the catalyst matrix. Characterization of the spent catalyst revealed the formation of two types of carbon species; encapsulating and filamentous carbon which can be oxidized by O2. 相似文献